PhD Defence
Nicole Kitt, University of À¶Ý®ÊÓÆµ
Characterizing Cofree Representations of SL_n x SL_m
The study, and in particular classification, of cofree representations has been an interest of research for over 70 years. The Chevalley-Shepard Todd Theorem provides a beautiful intrinsic characterization for cofree representations of finite groups. Specifically, this theorem says that a representation V of a finite group G is cofree if and only if G is generated by pseudoreflections. Up until the late 1900s, with the exception of finite groups, all of the existing classifications of cofree representations of a particular group consist of an explicit list, as opposed to an intrinsic group-theoretic characterization. However, in 2019, Edidin, Satriano, and Whitehead formulated a conjecture which intrinsically characterizes stable irreducible cofree representations of connected reductive groups and verified their conjecture for simple Lie groups. The conjecture states that for a stable irreducible representation V of a connected reductive group G, V is cofree if and only if V is pure. In comparison to the classifications comprised of a list of cofree representations, this conjecture can be viewed as an analogue of the Chevalley–Shepard–Todd Theorem for actions of connected reductive groups. The aim of this thesis is to further expand upon the techniques formulated by Edidin, Satriano, and Whitehead as a means to work towards the verification of the conjecture for all connected semisimple Lie groups. The main result of this thesis is the verification of the conjecture for stable irreducible representations V\otimes W of SL_n x SL_m satisfying dim V>=n^2 and dim W>=m^2.