News

Filter by:

Limit to items where the date of the news item:
Date range
Limit to items where the date of the news item:
Limit to news where the title matches:
Limit to news items tagged with one or more of:
Limit to news items where the audience is one or more of:

What if researchers could understand how cells grow, adapt and behave using the same tools engineers use to design circuits?

A new tutorial bridges the gap between biology and engineering to unlock novel insights and inspire innovation in biotechnology, health, and environmental science.

Life itself can be considered a technology that has evolved over billions of years. The researchers propose that cellular processes and microorganisms that play critical roles in everything from disease response to digestion function in ways similar to engineered systems.

Professors Christian Euler, Matthew Scott and PhD student Mohammed Zim developed the tutorial based on a synthesis of significant, well-established research.

“You can have very interesting technical, almost like engineering-driven understandings of living systems, and those living systems can teach you something about engineering as well,” Euler says.

Professor Valerie Wardis part of a new global coalition to revolutionize vaccine production with disruptive health technology. The technology is designed to enable local vaccine production, reducing production time from nine days to just one day. A breakthrough that has the potential to save millions of lives and significantly lower the cost of vaccine production.

A research coalition led by the Centre for Process Innovation (CPI) received $2.8 million from the Coalition of Epidemic Preparedness Innovation (CEPI) to fund technology development to combat epidemics and pandemics. The aim is to make small transportable units to manufacture vaccines, making vaccines more accessible and better able to deal with local outbreaks.

Ward is working with researchers and industry partners in Brazil, the UK, and Canada to aid the world in responding more swiftly and equitably to future epidemics and pandemics.

The grant focuses on developing technology to meet two specific goals. The first is rapid production of vaccines. The second is to decentralize manufacturing so it can be produced at different sites in smaller batches.

Researchers in the Department of Chemical Engineering have developed a new method for engineering bacteria that can be leveraged to improve biomedical applications such as drug delivery, cancer therapy, anti-inflammatory treatments, and vaccine development.

The international research group, led by Professor Yilan Liu, developed a process that enables bacteria to secrete bacterial membrane vesicles (BMVs). BMVs are nanosized bubble-shaped structures naturally released by bacteria. They have significant potential as tools for the development of a variety of therapeutics.

Currently, the adoption of BMVs has been hindered by low production yields under natural conditions. The technique established by Liu resulted in a 140-fold increase in the secretion of BMVs.

"This advancement in bacterial engineering has the potential to be a transformative platform for next-generation vaccines, therapeutics, and nutrient delivery," says Liu. "This new process could profoundly impact global health by making biomedical treatments more efficient, accessible, and affordable."

Researchers at the University of ݮƵ are taking a novel approach to tackle the critical issue of microplastic pollution in water systems. The research team is engineering bacteria that already exist in wastewater to break down Polyethylene terephthalate(PET).

Plastic waste in water systems is an urgent environmental concern. PET plastics degrade into microplastics that adversely impact the ecosystems of our lakes, rivers, and oceans.

Professor Marc Aucoin from the Department of Chemical Engineering and Professor Brian Ingalls from the Department of Applied Mathematics with PhD student Aaron Yip are developing a technique that enables wastewater bacteria to break the links between plastic molecules so PETs can be degraded.

In 2023, Professors William Anderson and Marc Aucoin supervised preliminary research on concussion biomarkers found in bodily fluids, particularly saliva.

Exploring concussion biomarker research

Initially, Shazia Tanvir, a research associate of Anderson’s, began exploring research on concussion biomarkers. She was later introduced to Andrew Cordssen-David, who was a Master of Business, Entrepreneurship and Technology student at the Conrad School of Entrepreneurship and Business at the time.

Cordssen-David was also a former student-athlete who played for the varsity men’s hockey team at the University of ݮƵ and had experienced his share of concussions. Recognizing the potential impact of a saliva-based concussion test, Cordssen-David and Tanvir got to work, committing themselves to developing a new concept for a saliva-based concussion screening tool.

A new study by researchers at the University of ݮƵ has uncovered a crucial mechanism in the evolution of regulatory systems in E. coli that could have far-reaching applications in cancer therapy and biomanufacturing for products such as insulin or mRNA vaccines.

The critical insight arose when the research team examined a regulatory mechanism near the tail end of a protein called PykF

“A helpful analogy to understand this mechanism is the speedometer in a car. When you're driving through a town, where there are dangers to avoid, you need to know how fast you're going, so the speedometer is important. But, if you're on an open stretch of road with no risks, you can throw the speedometer out the window and put the pedal to the metal,” said Dr. Christian Euler from the Department of Chemical Engineering. “The research opens up the potential to one day put a new stoplight on the road to limit growth rate.”

The Department of Chemical Engineering is proud to announce the appointment of two of its faculty members as Canada Research Chairs (CRC). The designation of Canada Research Chair is an honour bestowed upon exceptional emerging researchers. Professors Valerie Ward and Tizazu Mekonnen are both trailblazers in their respective fields.

Ward now holds a CRC in Microalgae Biomanufacturing. Her research group uses microalgae to make a variety of products.

The highest honour for graduates in the Faculty of Engineering is the Alumni Achievement Medal. Baoling Chen, who completed her PhD in Chemical Engineering in 2015 was bestowed this honour in recognition of her exceptional talent for strategic industry partnership development, mission-driven leadership, and disruptive biotechnology research.