This document is a general resource for teaching teams seeking to incorporate lab activities in their remote courses. It has been adapted from guidelines developed by the University of Toronto shared by that institution with aCA license.
For many programs, laboratory and experimental work help develop technical and psychomotor skills essential to the workplace, as well as to higher education. This document aims to provide guidance to promote these essential skills and learning objectives in light of the shift to remote teaching. All resources should be explored and vetted before incorporating and promoting them in learning activities.
Keep in Mind:
- Migrating labs to a remote environment requires creativity. The challenge is finding an online option to achieve yourlearning outcomesand not necessarily an exact replication of the face-to-face lab. Erik Brogt, University of Canterbury, has compiled a list of conventional learning outcomes and proposesof achieving them.
- Focus on the foundational learning outcomes that can be achieved online, such as data analysis and interpretation, or hypothesis testing by means of an online simulation.
- Where possible, focus onactive learning strategiesand provide feedback to students.
- Create authentic assignments relevant to current events such as the Covid-19 pandemic.
- Where possible, use materials available at home or outdoors. The articleemphasizes promoting lab safety at home.
Sourcing and Creating Lab Content:
Remote teaching requires creativity, adaptability, and intentional design. Learning outcomes guide this design process, and while many out-of-the box solutions and resources exist, these should be contextually tailored to match specific objectives. The following can be incorporated into lab design:
- open source materialat no cost. Many high-quality lab simulations and interactive learning platforms can be integrated with LMS course shells (LEARN). The following are curated lists ofmostlyopen source educational material for labs.
- License rich contentthat includes discipline-specific online labs and formative assessments.
- licensed software available through ISTor your Faculty computing office
- of some common platforms:
There is a temporary Covid-19 adjustment to theancillary fee policyat ݮƵ.
- or activity guidesusing simple video recordings of lab protocols and accompanying data sets, Studio courses or other practical labs.
Designing Your Own Lab
- Draw uponUniversal Design for Learningso learning opportunities are maximized for all studentsduring the design process. Students may be learning remotely with different levels of access to resources.
- DzԲpros and cons of asynchronous and synchronous learning strategieswhen determining the method of delivery.
- Guide learners through an experiment.Where a choice, prediction, or observation would have been made, poll the class. This can be done asynchronously or synchronously, although if synchronous, provision should be made for students unable to participate live.
- Use real examples and current issuesas case studies for students to reinforce the relevance of their learning. Assign a “Design your own experiment” unit using common materials found at home or have students share their ‘at-home’ lab equivalent for peer feedback.
- Build transferable skills.Host live panel discussions or interviews with professionals who can relate their real-world experiences to learning outcomes.
- ճKeep Learning websiteprovides a list oftools and technologyto create content, assess student work, and facilitate collaboration. IST-ITMS providesto aid in video creation. If creating recordings on your own, keep thesebest practices for video and audio recordingin mind. If recording in a lab, please enforcehealth and safety guidelines. Also, recordings may haveprivacy implications for studentsto consider. This article from lumen oncan be referenced.
Choosing Effective Assignments
Online assignments must capture pre-defined learning objectives and beintentionally integrated into your lab activity. Certain common deliverables can still be preserved such as a formal lab report, research paper, or numerical calculations. However, online assignments can afford a greater level of creativity and resourcefulness to students and instructors.
Substitute activitiescan include:
- E-portfolios/Blogscapture a timeline of student progress and can be invaluable to scaffolded labs. Students can sequentially present their plans, results, analyses, and reflections, and are encouraged to actively engage with their learning throughout the entire lab process.PebblePadis a useful tool supported by the University of ݮƵ for e-portfolio creation.
- Infographicsencourage students to creatively present their results and observations visually. They must deconstruct complex concepts and become comfortable with abstract topics enough to distill information to a general audience. Additionally, it facilitates multiple assessment pathways for learners who prefer to share their knowledge visually.
- Video or Narrated Presentationscan feature students presenting their results, individually or as a group, based on research, case studies, experiments, and other activities.
- Submission of Evidenceof the test setup and results can be used for simple physical labs which students can carry out at home, or simulations which allow screen capture and recording.
Experimental Demonstrations
You can teach complex or key concepts using webinar tools such as Bongo or WebEx, in conjunction with input tools such as a tablet and stylus. You can also use screen recording software, such as Camtasia or Sreencast-o-Matic to create your own videos. Perhaps you can convert the lab to a larger interactive lecture where you demonstrate or show a video sequence of the process and protocols. Refer to theTools and Technologytable on the Keep Learning website for tool information.
Simulations and Animations
You can use online simulations to replicate in-class activities and hit learning outcomes. This may be especially useful in labs where students must observe processes or results to draw conclusions, develop specific technical skills, or gain familiarity with laboratory apparatus. You can also consider simulations for labs that are too dangerous to perform at home, such as high voltage electrical labs, or where students may not have necessary equipment like multimeters or oscilloscopes. Additional activities such as data analysis, Q&A sessions, or lab reports based on the simulation can be incorporated. You may find useful:
VR/AR
Another avenue that can be explored is usingVR/ARtechnology for labs that involve visiting sites. For example, The Faculty of Environment’s Ecology Lab and Mapping, Analysis & Design (MAD), Centre for Extended Learning (CEL) and Centre for Teaching Excellence (CTE) worked together to create the “Spongy bog 360 VR project”, a virtual field trip experience.
Lab Kits
At times, there really is no substitute for a physical lab. In such cases, consider supplying your students with lab kits, or asking them to purchase readily available components from local stores or online. If you want to mail pre-made kits to students, the University provides ane-commerce service,, or departmental stores to help you with sourcing and assembling, and in some cases shipping. If students are to procure their own materials, ensure you give sufficient notice ahead of time. Some students may not be able to buy materials at all, so have a backup plan such as mailing components to those students.
Data Analysis and Interpretation
You can provide opportunities to interpret data similar to what students would have encountered in a lab. If students cannot collect their own data using online simulations or simple live experiments at home, consider providing datasets from experiments conducted by lab staff or locating online open source datasets. Students can then perform analysis as previously intended. Thiscan provide more insight into migrating experimental work online, and gives alternatives to datasets.
Further reading:
Support
If you would like support applying these tips to your own teaching, CTE staff members are here to help. View theCTE Supportpage to findthe most relevant staff member to contact.

lets others remix, tweak, and build upon our work non-commercially, as long as they credit us andindicate if changes were made. Use this citation format:Best Practices for Online Labs.Centre for Teaching Excellence, University of ݮƵ.