Kathryn E. Hare

Contact information

Kathryn Hare

Department of Pure Mathematics聽
University of 蓝莓视频
蓝莓视频, Ontario, Canada
N2L 3G1

贰尘补颈濒:听kehare@uwaterloo.ca

Curriculum Vitae

Degrees

  • PhD (University of British Columbia) 1986

  • BMath (University of 蓝莓视频) 1981

Awards

  • Fellow Canadian Mathematical Society, 2020

  • University of 蓝莓视频, Mathematics Faculty Distinction in Teaching Award, 2020

  • Honourary Doctorate of Technology, Chalmers University of Technology, 2011

  • Female Guest Professor, Sweden, 2000-2001

  • AMS Featured Review, 1995

  • NSERC Postgraduate Scholarship, 1983-85

  • I.W. Killam Predoctoral Fellowship, 1985-86

  • NSERC Operating Grant, 1987-date

Academic appointments

Dates Position Institution
2018-2019 Visiting Professor Acadia University
2013-2014 Visiting Professor University of St. Andrews
2007-2008 Visiting Professor University of Hawaii-Manoa
Summer 2002 AARMS Workshop Instructor Memorial University
2000-2001 Visiting Professor Chalmers University of Technology and
Goteborg University
1996-Present Full Professor University of 蓝莓视频
1991-96 Associate Professor University of 蓝莓视频
1993-94 Visiting Fellow University of New South Wales
1988-91 Assistant Professor University of 蓝莓视频
1986-88 Assistant Professor University of Alberta

University of 蓝莓视频 administrative appointments

Dates Position
2014-2018 Chair, Department of Pure Mathematics
2008-2012 Associate Chair for Graduate Affairs, Department of Pure Mathematics
2005 Associate Chair for Graduate Affairs, Department of Pure Mathematics
1999-2000 Associate Chair for Undergraduate Affairs, Department of Pure Mathematics
1994-1999 Associate Chair for Graduate Affairs, Department of Pure Mathematics

Selected External service

Dates Position
2005-date Mentor for Association for Women in Mathematics
2017 Local Organizer, CMS Winter Meeting
2016-date CMS Finance Committee
2016 External reviewer, graduate program, Western University
2012, 2014 Organising committee - Summer school for Women Undergraduates
2010-2012 Chair CMS Women in Math Committee
2009 External Reviewer, University of Regina Mathematics Department
2007-2012 Editor Canadian Math Bulletin & Canadian Journal of Math
2003-2005 Vice聽President Canadian Mathematics Society
2003-2005 CMS Endowment Funds Committee
2003-2005 CMS Education Committee
2003-2005 CMS Women in Math Committee
2003 External Reviewer, Dalhousie University Math Department
2002-2005 NSERC Grant Selection Committee for Mathematics
2002-2003 CMS Endowment Funds Committee. Chair
2002 Ontario Graduate Scholarship Panel
2002 NExTMAC Workshop Panelist
2001-2005 CMS Board of Directors
2001 External Reviewer, Memorial University Math Department
1999 CMS Endowment Funds Committee
1998-2000 Ontario Graduate Scholarship Panel. Chair in 1999
1998-1999 Chair, CMS Task Force on Support of the Mathematics Community
1997-1999 CMS Government Policy Committee
1997-1998 Organizing committee for first Canadian Celebration of Women in Mathematics
1992 Ministry of Education Workshop on secondary schools mathematics curriculum

Research papers

Papers in refereed journals

(a) Harmonic analysis on compact Lie groups

  • K. Hare and S. Gupta, Smoothness of convolutions of orbital measures on complex Grassmannians, accepted by J. Lie Theory.
  • K. Hare and S. Gupta, Transferring spherical multipliers on compact symmetric spaces, accepted by Math Zeitschrift.
  • K. Hare and J. He, Geometric proof of the L2 - singular dichotomy for orbital measures on Lie algebras and groups, Boll. Unione Mat. Ital. 11(2018), 573鈥580.
  • K. Hare and S. Gupta, The absolute continuity of convolutions of orbital measures in symmetric spaces, J. Math. Anal. and Appl. 450(2017), 81鈥111.
  • K. Hare and J. He, The absolute continuity of convolution products of orbital measures in symmetric spaces, Monatsh. Math. 182(2017), 619鈥635.
  • K. Hare and J. He, Smoothness of convolution products of orbital measures on rank one symmetric spaces, Bull. Aust. Math. Soc. 94(2016), 131鈥143.
  • K. Hare and S. Gupta, Characterizing the absolute continuity of the convolution of orbital measures in a classical Lie algebra, Can. J. Math. 68(2016), 841鈥874.
  • K. Hare, D. Johnstone, F. Shi and W-K. Yeung, L2-singular dichotomy for exceptional Lie groups and algebras, J. Aust. Math. Soc. 95(2013), 362鈥382.
  • S. Gupta and K. Hare, Smoothness of convolutions of zonal measures on compact, symmetric spaces, J. Math. Anal. Appl. 402 (2013), 668鈥678.
  • K. Hare and P. Skoufranis, The smoothness of orbital measures on exceptional Lie groups and algebras, J. Lie Theory 21 (2011), 987鈥1007.
  • S. Gupta and K. Hare, L2 - singular dichotomy for orbital measures on complex groups, Boll. Un. Math. Ital. (9) 3 (2010), 409鈥419.
  • S. Gupta and K. Hare, Smoothness of convolution powers of orbital measures on the symmetric spaces SU(n)/SO(n), Monat. Math. 159 (2010), 27鈥43.
  • S. Gupta and K. Hare, L2 - singular dichotomy for orbital measures of classical compact Lie groups, Adv. Math. 222 (2009), 1521鈥1573.
  • S. Gupta and K. Hare, Convolutions of generic orbital measures in compact symmetric spaces, Bull. Aust. Math. Soc. 79 (2009), 513鈥522.
  • S. Gupta, K. Hare and S. Seyfaddini, L2 - singular dichotomy for orbital measures of classical simple Lie algebras, Math. Zeit. 262 (2009), 91鈥124.
  • S. Gupta and K. Hare, Dichotomy problem for orbital measures of SU(n), Monatsch. Math., 146 (2005), 227鈥238.
  • K. Hare and K. Yeats, Size of characters of exceptional Lie groups, J. Aust. Math. Soc., 77 (2004), 1鈥16.
  • D. Grow and K. Hare, Independence of characters on non-abelian groups, Proc. Amer. Math. Soc., 132 (2004), 3641鈥3651.
  • K. Hare and W-L. Yee, The singularity of orbital measures on compact Lie groups, Rev. Iberoamericana, 20 (2004), 517鈥530.
  • S. Gupta and K. Hare, Singularity of orbits in classical Lie algebras, Geometric and Functional Analysis, 13 (2003), 815鈥844.
  • S. Gupta and K. Hare, Singularity of orbits in SU(n), Israel J., 130 (2002), 93鈥107.
  • K. Hare, D. Wilson and W-L. Yee, Pointwise estimates of the size of characters of compact Lie groups, J. Aust. Math. Soc., 69 (2000), 61鈥84.
  • K. Hare, The size of characters of compact Lie groups,聽Studia聽Math.聽129聽(1998), 1鈥18.

(b) Fractals and harmonic analysis

  • K. Hare and I. Garcia, Properties of quasi-Assouad, accepted by Ann. Acad. Sci. Fenn. Math.
  • K. Hare, I. Garcia and F. Mendivil, Intermediate Assouad-like dimensions, accepted by J. Fractal Geometry.
  • K. Hare, I. Garcia and F. Mendivil, Almost sure Assouad-like dimensions of complementary sets, accepted by Math. Zeitscrift.
  • K. Hare, K. G. Hare and W. Shen, The Lq spectrum for a class of self-similar measures with overlap, accepted by Asian J. Math.
  • K. Hare, K. G. Hare and A. Rutar, When the WSC implies the generalized FT condition, accepted by Proc. Amer. Math. Soc.
  • K. Hare and K. G. Hare, Intermediate Assouad-like dimensions for measures, accepted by Fractals.
  • K. Hare, C. Cabrelli and U. Molter, Riesz bases of exponentials and the Bohr topology, accepted by Proc. Amer. Math. Soc.
  • K. Hare and S. Troscheit, Lower Assouad dimension and regularity, accepted by Proc. Camb. Phil. Soc.
  • K. Hare, F. Mendivil and L. Zuberman, Measures with specified support and arbitrary Assouad dimension, Proc. Amer. Math. Soc. 184(2020), 3881鈥3895.
  • K. Hare, K. G. Hare and S. Troscheit, Quasi-doubling self-similar measures with overlaps, J Fractal Geometry, 7(2020), 233鈥270.
  • K. Hare, K. G. Hare, B. Morris and W. Shen, Entropy of Cantor-like measures, Acta. Math. Hung. 159(2019), 563鈥588.
  • K. Hare and K. G. Hare, Local dimensions of overlapping self-similar measures, Real Analysis Exch. 44(2019), 247鈥266.
  • K. Hare, J. Fraser, K. G. Hare, S. Troscheit and H. Yu, The Assouad spectrum and the quasi-Assouad dimension: a tale of two spectra, Ann. Acad. Fenn. 44(2019), 379鈥387.
  • K. Hare, K. G. Hare and K. Matthews, Local dimensions of measures of finite type on the torus, Asian. J. Math. 23(2019), 127鈥155.
  • K. Hare, K. G. Hare and S. Troscheit, Local dimensions of random honogeneous self-similar measures: strong separation and finite type, Math. Nach., 291(2018), 2397鈥2426.
  • K. Hare, K. G. Hare and M. Ng, Local dimensions of measures of finite type II - measures without full support and with non-regular probabilities, Can. J. MAth. 70(2018), 824鈥867.
  • K. Hare, I. Garcia and F. Mendivil, Assouad dimensions of complementary sets, Proc. Royal Soc. Edinburgh, 148A(2018), 517鈥540.
  • K. Hare, K. G. Hare and G. Simms, Local dimensions of measures of finite type III - measures that are not equicontractive, J. Math. Anal. and Appl. 458(2018), 1653鈥1677. Corr. J. Math. Anal. and Appl. 483(2020), 123550.
  • K. Hare, K. G. Hare and K. Matthews, Local dimensions of measures of finite type, J. Fractal Geometry, 2(2016), 331鈥376.
  • K. Hare, Self-affine measures that are Lp-improving, Colloq. Math. 139(2015), 299鈥243.
  • K. Hare, F. Mendivil and L. Zuberman, Packing and Hausdorff measures of Cantor sets associated with series, Real Anal. Exch. 40(2015), 421鈥433.
  • K. Hare and M. Ng, Hausdorff and packing measure of balanced Cantor sets, Real Anal. Exch. 40(2014), 113鈥128.
  • C. Bruggeman, C. Mak and K. Hare, Multifractal spectrum of self-similar measures with overlap, Nonlinearity 27 (2014), 227鈥256.
  • C. Bruggeman and K. Hare, Multi-fractal analysis of convolution powers of measures, Real Anal. Exch. 38 (2012/13), 391鈥408.
  • K. Hare, F. Mendevil and L. Zuberman, The sizes of rearrangements of Cantor sets, Can. Math. Bull. 56 (2013), 354鈥365.
  • K. Hare, B. Steinhurst, A. Teplyaev and D. Zhou, Disconnected Julia sets and gaps in the spectrum of Laplacians on symmetric finitely ramified fractals, Math. Res. Lett. 19 (2012), 537鈥553.
  • P-W. Fong, K. Hare and D. Johnstone, Multifractal analysis for convolutions of overlapping Cantor measures, Asian J. Math. 15 (2011), 53鈥69.
  • K. Hare and L. Zuberman, Classifying Cantor sets by their multifractal spectrum, Non-Linearity, 23 (2010), 2919鈥2933.
  • C. Cabrelli, K. Hare and U. Molter, Classifying Cantor sets by their fractal dimensions, Proc. Amer. Math. Soc., 138 (2010), 3965鈥3974.
  • K. Hare and D. Zhou, Gaps in the ratios of the spectrum of Laplacians on fractals, Fractals 17 (2009), 523鈥535.
  • K. Hare, P. Mohanty and M. Roginskaya, General energy formula, Math. Scand., 101 (2007), 29鈥47.
  • M. Allen, G. Cruttwell, J.-O. Ronning and K. Hare, Dimensions of fractals in the large, Chaos, Solitons and Fractals, 31 (2007), 5鈥13.
  • K. Hare and M. Roginskaya, Lp-Improving properties of measures of positive energy dimension, Colloq. Math., 102 (2005), 73鈥86.
  • K. Hare and M. Roginskaya, Energy of signed measures, Proc. Amer. Math. Soc., 132 (2004), 397鈥406.
  • K. Hare and J-O. Ronning, Fractal dimensions of infinite product spaces, Int. J. Pure & App. Math., 14 (2004), 136鈥169.
  • K. Hare and M. Roginskaya, Multipliers of spherical harmonics and energy of measures on the sphere, Arkiv. Mat., 41 (2003), 281鈥294.
  • K. Hare and M. Roginskaya, A Fourier series formula for energy of measures with applications to Riesz products, Proc. Amer. Math. Soc., 131 (2003), 165鈥174.
  • K. Hare and M. Roginskaya, Energy of measures on compact Riemannian manifolds, Studia Math., 159 (2003), 291鈥314.
  • C. Cabrelli, K. Hare and U. Molter, Sums of Cantor sets yielding an interval, J. Aust. Math. Soc., 73 (2002) 405鈥418.
  • K. Hare and S. Yazdani, Quasi self-similarity and multifractal analysis of Cantor measures, Real Analysis Exch., 27 (2001/2), 287鈥307.
  • K. Hare and T. O鈥橬eil, N-Fold Sums of Cantor sets, Mathematika, 47 (2000) 243鈥250.
  • C. Cabrelli, K. Hare and U. Molter, Sums of Cantor sets, Ergodic Theory and Dynamical systems 17 (1997), 1299鈥1313.

(c) Thin Sets

  • K. Hare and P. Mohanty, A non-abelian, non-Sidon completely bounded Lambda(p) set, accepted by Can. Math. Bull.
  • K. Hare and R. Yang, Sidon sets are proportionally Sidon with small Sidon constants, Can. Math. Bull. 62(2019), 798鈥809.
  • K. Hare and T. Ramsey, The ubiquity of Sidon sets that are not I0, Acta. Sci. Math. (Szeged) 82(2016), 509鈥518.
  • K. Hare and P. Mohanty, Completely bounded Lambda(p) sets that are not Sidon, Proc. Amer. Math. Soc., 144(2016), 2861鈥2869.
  • K. Hare and T. Ramsey, The relationship between e-Kronecker sets and Sidon sets, Can. Bull. Math. 59(2016), 521鈥527.
  • K. Hare and T. Ramsey, Exact Kronecker constants of three element sets, Acta Math. Hung. 146(2015), 306鈥331.
  • K. Hare and T. Ramsey, Kronecker constants of arithmetic progressions, Experimental Math. 23 (2014), 414鈥422.
  • K. Hare and S. Yamagishi, A generalization of Erd 虌os-Renyi to m-fold sums and differences, Acta Arith. 166 (2014), 55鈥67.
  • K. Hare and T. Ramsey, Exact Kronecker constants of Hadamard sets, Colloq. Math. 130 (2013), 39鈥49.
  • C. Graham and K. Hare, Existence of large 蔚-Kronecker sets and FFI0(U) sets in discrete abelian groups, Colloq. Math. 127 (2012), 1鈥15.
  • K. Hare and T. Ramsey, Kronecker constants for finite subsets of integers, J. Fourier Anal. and Applications 18 (2012), 326鈥366.
  • C. Graham and K. Hare, Characterizations of some classes of I0 sets, Rocky Mtn. J. 40 (2010), 513鈥525.
  • C. Graham and K. Hare, Sets of zero discrete harmonic density, Math. Proc. Camb. Phil. Soc. 148 (2010), 253鈥266.
  • D. Grow and K. Hare, Central interpolation sets for compact groups and hypergroups, Glasgow Math. J. 51 (2009), 593鈥603.
  • C. Graham, K. Hare and T. Ramsey, Union problems for I0 sets, Acta Sci. Math. (Szeged) 75 (2009), 175鈥195. Corrigendum, Acta Sci. Math. (Szeged) 76 (2010), 487鈥488.
  • C. Graham and K. Hare, I0 sets for compact, connected groups: Interpolation with measures that are non-negative or of small support, J. Aust. Math. Soc. 84 (2008), 199鈥215.
  • C. Graham and K. Hare, Characterizing Sidon sets by interpolation properties of subsets, Colloq. Math. 112 (2008), 175鈥199.
  • C. Graham and K. Hare, 蔚-Kronecker and I0 sets in abelian groups IV: Interpolation of non- negative measures, Studia Math., 177 (2006), 9鈥24.
  • C. Graham and K. Hare, 蔚-Kronecker and I0 sets in abelian groups I: Arithmetic properties of 蔚-Kronecker sets, Math. Proc. Camb. Phil. Soc., 140 (2006), 475鈥489.
  • C. Graham, K. Hare and T. Korner, 蔚-Kronecker sets and I0 sets in abelian groups II: Sparseness of products of 蔚-Kronecker sets, Math. Proc. Camb. Phil. Soc., 140 (2006), 491鈥508.
  • C. Graham and K. Hare, 蔚-Kronecker and I0 sets in abelian groups III: Interpolation of measures on small sets, Studia Math., 171 (2005), 15鈥32.
  • K. Hare and T. Ramsey, I0 sets in non-abelian groups, Math. Proc. Comb. Phil. Soc., 135 (2003), 81鈥98.
  • K. Hare, Random weighted Sidon sets, Colloq. Math., 86 (2000), 103鈥109.
  • K. Hare, Sidonicity in compact, abelian hypergroups, Colloq. Math. 96 (1998), 171鈥180.
  • K. Hare and D. Wilson, Weighted p-Sidon sets, J. Aust. Math. Soc. 61 (1996), 73鈥95.
  • K. Hare, Central Sidonicity for compact Lie groups, Ann. Inst. Fourier (Grenoble) 45 (1995), 547鈥564.
  • K. Hare, The support of a function with thin spectrum, Colloq. Math. 67 (1994), 147鈥154.
  • K. Hare and D. Wilson, Structural criterion for the existence of infinite central 鈭(p) sets, Trans. Amer. Math. Soc. 337 (1993), 907鈥925.
  • K. Hare, Union results for thin sets, Glasgow Math. Journal 32 (1990), 241鈥254.
  • K. Hare, Strict-2-associatedness for thin sets, Colloq. Math. 56 (1988), 367鈥381.
  • K. Hare, Arithmetic properties of thin sets, Pac. J. Math. 131 (1988), 143鈥155.
  • K. Hare, An elementary proof of a result on 鈭(p) sets, Proc. Amer. Math. Soc. 104 (1988), 829鈥834.

(d) Multipliers and Maximal Operators

  • A. Dooley, K. Hare and M. Roginskaya, On Lp-improving measures, Rev. Iberoamericana, 32(2016), 1211鈥1226.
  • K. Hare and M. Roginskaya, Directional maximal operators with smooth densities, Math. Nachr. 282 (2009), 1740鈥1752.
  • K. Hare and P. Mohanty, Distinctness of spaces of Lorentz-Zygmund multipliers, Studia Math., 169 (2005), 143-161.
  • K. Hare and F. Ricci, Maximal functions with polynomial densitites in lacunary directions, Trans. Amer. Math. Soc., 355 (2003), 1135鈥1144.
  • K. Hare and J-O. Ronning, Size of Max(p) sets and density bases, J. Fourier Anal. and Appl., 8 (2002), 259鈥268.
  • K. Hare and E. Sato, Spaces of Lorentz multipliers, Can. J. Math, 53 (2001), 565鈥591.
  • K. Hare, Maximal operators and Cantor sets, Can. Math. Bull., 43 (2000), 330鈥342.
  • K. Hare and J.-O. R 虉onning, Applications of generalized Perron trees to maximal functions and density bases, J. Fourier Anal. and App. 4 (1998), 215鈥227.
  • K. Hare, A general approach to Littlewood-Paley theorems for orthogonal families, Can. Math. Bull. 40 (1997), 296鈥308.
  • K. Hare and I. Klemes, On permutations of lacunary intervals, Trans. Amer. Math. Soc. 347 (1995), 4105鈥4127. (Featured Review in AMS Reviews 95m: 42027)
  • K. Hare and R. Grinnell, Lorentz-improving measures, Illinois J. Math. 38 (1994), 366鈥389.
  • K. Hare, Tame Lp-Multipliers, Colloq. Math. 64 (1993), 303鈥314.
  • K. Hare and I. Klemes, A new type of Littlewood-Paley partition, Arkiv for Mat. 30 (1992), 297鈥307.
  • K. Hare, The Size of (L2,Lp) multipliers, Colloq. Math. 63 (1992), 249鈥262.
  • K. Hare, Norm one multipliers, Can. Math. Bull. 35 (1992), 194鈥203.
  • K. Hare, Lp-Improving measures on compact non-abelian groups, J. Aust. Math. Soc. 46 (1989), 402鈥414.
  • C. Graham, K. Hare and D. Ritter, The size of Lp-improving measures, J. Func. Anal. 84 (1989) 472鈥495.
  • K. Hare and I. Klemes, Properties of Littlewood-Paley sets, Math. Proc. Camb. Phil. Soc. 105 (1989), 485鈥494.
  • K. Hare, Properties and examples of (Lp,Lq) multipliers, Indiana Univ. Math. Journal 38 (1989), 211鈥227.
  • K. Hare, A characterization of Lp-improving measures, Proc. Amer. Math. Soc. 102 (1988), 295鈥299.

(e) Miscellaneous Topics

  • S. Gupta and K. Hare, On convolution squares of singular measures, Colloq. Math., 100 (2004), 9鈥16.
  • K. Hare and A. Stokolos, On weak type inequalities for rare maximal functions, Colloq. Math., 83 (2000), 173鈥182.
  • K. Hare and J. Ward, Finite dimensional H-invariant spaces, Bull. Aust. Math. Soc. 56 (1997), 353鈥361.
  • K. Hare and M. Shirvani, The semisimplicity problem for p-adic group algebras, Proc. Amer. Math. Soc. 108 (1990), 653鈥664.

In refereed conference proceedings

  • K. Hare, Multifractal analysis of Cantor-like measures, New trends in applied harmonic analysis - sparse representations, compressed sensing and multifractal analysis. Ed. A. Aldroubi, C. Cabrelli, S. Jaffard and U. Molter, Birkhauser series of Applied and computational harmonic analysis, 350(2015), 1鈥19.
  • K. Hare and A. Stokolos, On the rate of tangential convergence of functions from Hardy spaces, 0 < p < 1, Contemporary Math. 370 (2005), 119鈥132.
  • K. Hare and N. Tomczak-Jaegerman, Banach space properties of translation invariant subspaces of Lp, Analysis at Urbana 1, London Math. Soc. Lecture Note Series 137, ed. E. Berkson, N. Peck & J. Uhl, Cambridge Univ. Press 1989, 185鈥195.聽

Postdoctoral supervision

  • Sascha Troscheit, May 2017鈥揇ec. 2018 (co-supervised with K.G. Hare)
  • Ignacio Garcia, Aug. 2015鈥揇ec. 2016
  • Michael (Ka-Shing) Ng, January鈥揂pril 2015
  • Leandro Zuberman, May 2009鈥揂pril 2010
  • Denglin Zhou, January 2008鈥揂ugust 2009
  • Parasar Mohanty, September 2003鈥揂ugust 2004
  • Maria Roginskaya, September 2002鈥揂ugust 2003
  • Jan-Olav R 虉onning, September 1995鈥揇ecember 1995 and March 1996鈥揓une 1996

Graduate Supervision

PhD

  • Robert (Xu) Yang, 鈥淪idon and Kronecker-like sets in compact abelian groups鈥, 2014鈥2019 (graduated)
  • Michael (Ka-Shing) Ng, 鈥淪ome aspects of Cantor sets鈥, 2009鈥2014 (graduated)
  • Denglin Zhou, 鈥淪pectral analysis of Laplacians on certain fractals鈥, 2003鈥2007 (graduated)

MMath

  • Claudia Guerro, 鈥淪ome applications of renewal theorem in fractal geometry鈥, 2019鈥2020 (graduated)
  • Samuel Desrochers, 鈥淎ssouad dimension and non-embeddability鈥, 2019鈥2020 (graduated)
  • Robert (Xu) Yang, 鈥淚nterpolation sets for compact Abelian groups鈥, 2013鈥2014 (graduated)
  • David Farahany, 鈥淢ultiplier problem for the Ball and the Kakeya maximal operator鈥, 2012鈥2013 (graduated)
  • Sheena Tan, 鈥淗adamard, 蔚-Kronecker and I0 sets in T鈥, 2010鈥2011 (graduated)
  • Vincent Chan, 鈥淥n convolution squares of singular measures鈥, 2009鈥2010 (graduated)
  • Sheldon Stewart, 鈥淐onstruction of a Besicovitch Set鈥, 2008鈥2009 (graduated)
  • Pei Pei, 鈥淗ausdorff dimension of the random Cantor set鈥, 2008鈥2010 (graduated)
  • Keon Choi, 鈥淢aximal operators in R2鈥, 2005鈥2007 (graduated)
  • Karen Meagher, 鈥淐onvolution estimates with Orlicz spaces鈥, 1995鈥1997 (graduated)
  • Hui Kong, 鈥淩iesz Product Measures鈥, 1991鈥1992 (graduated)