Revealing new insights into quantum system interactions
IQC researchers develop theoretical framework and experimental tools to better understand how quantum systems interact
By Naomi Grosman
Researchers at the Institute for Quantum Computing (IQC) at the University of À¶ĘźÊÓÆ” have explored how quantum systems interact with their environments, revealing insights that could enhance future quantum computing applications.
Quantum systems â physical systems that follow the rules of quantum mechanics â all interact with their environments, but that interaction ranges from weak, minimal interference to strong interactions so impactful that the system and environment start affecting each other. Understanding the distinction can help scientists predict quantum system behaviour, potentially leading to a better understanding of fundamental science and improvements to quantum computing systems.
But so far, the transition from weak to strong has been very difficult to pinpoint.
New research led by Dr. Adrian Lupascu, IQC faculty and professor in the Department of Physics and Astronomy, members of his research group and collaborators has now better described the transition and built the theoretical framework and experimental tools to do so.

âSometimes making progress in quantum information requires advancing certain limits of technology, such as increasing the size of a quantum system or improving its control. But our research is a different category of progress; we highlighted that there is something interesting happening in the transition from weak to strong coupling and found a physical implementation where we can explore this intermediate regime which is not something that was known or had been achieved before. We can now see where this crossover happens which gives more motivation and input to do future theoretical work.â
- Dr. Adrian Lupascu, IQC faculty and professor in the Department of Physics and Astronomy
The À¶ĘźÊÓÆ” team designed a superconducting single quantum qubit and realized a device based on this design at Massachusetts Institute of Technologyâs Lincoln Lab. The qubit design included a feature to allow adjusting the interaction between an atom and its environment from weak to strong â like turning a knob. This allowed the team to observe the transition, providing new insights into the complex physics involved.
Two main authors of the report, Dr. Robbyn Trappen and IQC alumni Dr. Xi Dai (PhD â22), collaborated on theory and implementation of the research. Trappen, who was a post doc at IQC while conducting this research, was responsible for running the experimental setup at MIT and coordination of experimental planning. Dai, then a graduate student, was involved in experimental work, contributing to the design of scripts and collaborating on data acquisition and analysis, and a detailed theoretical analysis following the completion of the experiment.
Trappen says the results from this experiment will be important in understanding the behaviour of quantum bits in a larger quantum processor, such as a quantum annealer, which is a specific type of quantum computer used to solve optimization problems.

âWe are examining the qubitâs performance in situations very relevant to what it would encounter as part of a larger processer. Other researchers or companies have quantum annealers, but we are exploring an angle that isnât usually looked at. It uses the same principles but the problems ours can solve is different and there are still questions to be answered how the future of quantum annealing will play out.â
- Dr. Robbyn Trappen, past IQC postdoc
Dai says it is commonly understood that quantum processors should be isolated to preserve their quantum properties, but complete isolation is ultimately unattainable.

âYou need to be able to control the system and that always introduces some interaction with the environment. Instead of trying to isolate maybe the first step is to understand what the environment does to the system, which is what we did. The next step is we can maybe engineer the environment in a certain way that steers its effect to a direction we want.â
-ÌęDr. Xi Dai, IQC alumni (PhD â22)
The work was part of a large quantum annealing program sponsored by Intelligence Advanced Research Projects Activity (IARPA) and Defense Advanced Research Projects Agency (DARPA). In addition to contributors from University of À¶ĘźÊÓÆ”, collaboration included researchers from MIT, Lincoln Lab, Northrop Grumman and University of Southern California.
The paper '' was published in Nature Communications in January.
(All images were taken at Lupascuâs Superconducting Quantum Devices Group lab at IQC, University of À¶ĘźÊÓÆ”.)
Nouveau regard sur les interactions des systĂšmes quantiques
Des chercheurs de lâIQC ont mis au point un cadre thĂ©orique et des outils expĂ©rimentaux qui jettent une nouvelle lumiĂšre sur les interactions des systĂšmes quantiques.
Par Naomi Grosman
En Ă©tudiant lâinteraction des systĂšmes quantiques avec leur environnement, des chercheurs de lâInstitut dâinformatique quantique (IQC) de lâUniversitĂ© de À¶ĘźÊÓÆ” ont fait des dĂ©couvertes qui ont le potentiel dâamĂ©liorer les futures applications de lâinformatique quantique.
Les systĂšmes quantiques â des systĂšmes physiques qui suivent les rĂšgles de la mĂ©canique quantique â interagissent avec leur environnement; ces interactions, parfois minimes, peuvent aussi ĂȘtre si prononcĂ©es quâelles influencent le tout. En comprenant cette variabilitĂ©, les scientifiques pourraient ĂȘtre mieux Ă mĂȘme de prĂ©dire les comportements des systĂšmes quantiques, et donc la science fondamentale et les façons dâamĂ©liorer lâinformatique quantique.
Avant maintenant, la transition dâeffets faibles Ă forts Ă©tait trĂšs difficile Ă cerner.
Mais voilĂ que dans le cadre dâune nouvelle Ă©tude dirigĂ©e par Adrian Lupascu, professeur Ă lâIQC et au DĂ©partement de physique et dâastronomie, un groupe de recherche et de collaborateurs est parvenu Ă mieux dĂ©crire la transition, si bien quâil a pu crĂ©er un cadre thĂ©orique en plus dâoutils expĂ©rimentaux Ă cet effet.

« Parfois, pour faire progresser lâinformatique quantique, il faut repousser les limites de la technologie, par exemple en agrandissant un systĂšme quantique ou en apprenant Ă mieux le maĂźtriser. Mais nos recherches relĂšvent dâune autre catĂ©gorie de progrĂšs; nous avons dĂ©montrĂ© quâil se passe quelque chose dâintĂ©ressant quand le couplage environnemental passe de faible Ă fort et dĂ©couvert une application physique qui nous permet dâĂ©tudier ce rĂ©gime intermĂ©diaire, ce que personne nâavait constatĂ© ni accompli auparavant. Maintenant que nous pouvons observer la transition, nous sommes particuliĂšrement motivĂ©s Ă Ă©tudier ces nouvelles donnĂ©es en vue de futurs travaux thĂ©oriques. »
- Adrian Lupascu, professeur Ă lâIQC et au DĂ©partement de physique et dâastronomie
Deux des principaux auteurs du rapport de recherche, Robbyn Trappen et Xi Dai (diplĂŽmĂ© au doctorat en 2022), ont collaborĂ© pour les volets thĂ©orique et pratique de lâĂ©tude. M. Trappen, alors chercheur postdoctoral, Ă©tait responsable du montage expĂ©rimental au MIT et de la planification. M. Dai, qui Ă©tait alors un Ă©tudiant de cycle supĂ©rieur, a quant Ă lui participĂ© Ă lâexpĂ©rimentation, notamment en contribuant Ă la rĂ©daction des scripts, Ă lâacquisition et lâanalyse de donnĂ©es ainsi quâĂ une analyse thĂ©orique dĂ©taillĂ©e une fois lâexpĂ©rience terminĂ©e.
M. Trappen affirme que les rĂ©sultats de cette expĂ©rience seront dĂ©terminants dans la comprĂ©hension du comportement des bits quantiques au sein dâun grand processeur quantique, comme un recuiseur quantique, un type dâordinateur utilisĂ© pour rĂ©soudre des problĂšmes dâoptimisation.

« On examine le comportement du qubit dans des situations qui ressemblent beaucoup Ă celles quâils rencontreraient dans un grand processeur, explique-t-il. Dâautres chercheurs et entreprises ont des recuiseurs quantiques, mais nous, on Ă©tudie un aspect habituellement laissĂ© de cĂŽtĂ©. Notre recuiseur fonctionne selon les mĂȘmes principes, mais il peut rĂ©soudre dâautres types de problĂšmes, et il reste encore des questions sans rĂ©ponse quant Ă lâavenir du recuit quantique. »
- Robbyn Trappen
M. Dai prĂ©cise quâil est communĂ©ment admis quâun processeur quantique doit ĂȘtre isolĂ© pour prĂ©server ses propriĂ©tĂ©s, mais quâune isolation totale est impossible.

« Il faut ĂȘtre en mesure de maĂźtriser le systĂšme, ce qui implique toujours une quelconque interaction avec lâenvironnement. Alors plutĂŽt que dâessayer de lâisoler, il vaut peut-ĂȘtre mieux commencer par comprendre lâeffet de lâenvironnement sur le systĂšme, et câest ce que nous avons fait, raisonne-t-il. La prochaine Ă©tape, ce serait de trouver comment configurer lâenvironnement pour rapprocher son effet du rĂ©sultat voulu. »
- Xi Dai
LâĂ©tude faisait partie dâun grand programme de recuit quantique parrainĂ© par lâIntelligence Advanced Research Projects Activity (IARPA) et la Defense Advanced Research Projects Agency (DARPA). En plus de lâĂ©quipe de lâUniversitĂ© de À¶ĘźÊÓÆ”, les participants comptaient des chercheurs du MIT, du Lincoln Laboratory et de lâUniversitĂ© de Californie du Sud.
Lâarticle « Dissipative Landau-Zener tunneling in the crossover regime from weak to strong environment coupling » a Ă©tĂ© publiĂ© dans la revue en janvier.
(Images prises au laboratoire du groupe de Lupascu consacrĂ© aux dispositifs quantiques supraconducteurs, Ă lâIQC de lâUniversitĂ© de À¶ĘźÊÓÆ”)