BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20200308T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20191103T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:686d7a61a1118 DTSTART;TZID=America/Toronto:20200910T160000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20200910T160000 URL:/statistics-and-actuarial-science/events/department -seminar-emma-jingfei-zhang-miami-university SUMMARY:Department seminar by Emma Jingfei Zhang\, Miami University CLASS:PUBLIC DESCRIPTION:Summary \n\nNETWORK RESPONSE REGRESSION FOR MODELING POPULATION OF NETWORKS WITH\nCOVARIATES\n\n-------------------------\n\nMultiple-net work data are fast emerging in recent years\, where a\nseparate network ov er a common set of nodes is measured for each\nindividual subject\, along with rich subject covariates information.\nExisting network analysis metho ds have primarily focused on modeling a\nsingle network\, and are not dire ctly applicable to multiple networks\nwith subject covariates.\n\nIn this talk\, we present a new network response regression model\,\nwhere the obs erved networks are treated as matrix-valued responses\,\nand the individua l covariates as predictors. The new model\ncharacterizes the population-le vel connectivity pattern through a\nlow-rank intercept matrix\, and the pa rsimonious effects of subject\ncovariates on the network through a sparse slope tensor. We formulate\nthe parameter estimation as a non-convex optim ization problem\, and\ndevelop an efficient alternating gradient descent a lgorithm. We\nestablish the non-asymptotic error bound for the actual esti mator from\nour optimization algorithm. Built upon this error bound\, we d erive the\nstrong consistency for network community recovery\, as well as the edge\nselection consistency. We demonstrate the efficacy of our method \nthrough intensive simulations and two brain connectivity studies.\n\nJoi n Zoom Meeting\n[https://zoom.us/j/8442836948?pwd=MVdCUFFCbVFuSzduQjhDQnNN Z3J1QT09]\n\nMeeting ID: 844 283 6948\nPasscode: 318995\n DTSTAMP:20250708T200657Z END:VEVENT END:VCALENDAR