BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20190310T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20181104T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:683908e46353d DTSTART;TZID=America/Toronto:20191011T103000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20191011T103000 URL:/statistics-and-actuarial-science/events/distinguis hed-lecture-paul-glasserman-columbia-university SUMMARY:Distinguished lecture by Paul Glasserman\, Columbia University CLASS:PUBLIC DESCRIPTION:Summary \n\nPRECISION FACTOR INVESTING: AVOIDING FACTOR TRAPS B Y PREDICTING\nHETEROGENEOUS EFFECTS OF FIRM CHARACTERISTICS\n\n----------- --------------\n\nWe apply ideas from causal inference and machine learnin g to estimate\nthe sensitivity of future stock returns to observable chara cteristics\nlike size\, value\, and momentum. By analogy with the informal notion of\na \"value trap\,\" we distinguish \"characteristic traps\" (st ocks with\nweak sensitivity) from \"characteristic responders\" (those wit h strong\nsensitivity). We classify stocks by interpreting these distincti ons as\nheterogeneous treatment effects (HTE)\, with characteristics\ninte rpreted as treatments and future returns interpreted as responses.\nThe cl assification exploits a large set of stock features and recent\nwork apply ing machine learning to HTE. Long-short strategies based on\nsorting stock s on characteristics perform significantly better when\napplied to charact eristic responders than traps. A strategy based on\nthe difference between these long-short returns profits from the\npredictability of HTE rather t han from factors associated with the\ncharacteristics themselves. This is joint work with Pu He.\n DTSTAMP:20250530T012452Z END:VEVENT END:VCALENDAR