BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20230312T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20221106T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:682858a40273e DTSTART;TZID=America/Toronto:20231027T160000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20231027T170000 URL:/statistics-and-actuarial-science/events/david-spro tt-distinguished-lecture-jeffrey-rosenthal SUMMARY:David Sprott Distinguished Lecture by Jeffrey Rosenthal CLASS:PUBLIC DESCRIPTION:Summary \n\nDistinguished Lecture Series\n\nJEFFREY ROSENTHAL\n _University of Toronto_\n\nRoom: DC 1302\n\nSPEEDING UP METROPOLIS USING T HEOREMS\n\n-------------------------\n\nMarkov chain Monte Carlo (MCMC) al gorithms\, such as the Metropolis\nalgorithm\, are designed to converge to complicated high-dimensional\ntarget distributions\, to facilitate sampli ng.  The speed of this\nconvergence is essential for practical use.  In this talk\, we will\npresent several theoretical results which can help im prove the\nMetropolis algorithm's convergence speed.  Specific topics wil l\ninclude: diffusion limits\, optimal scaling\, optimal proposal shape\,\ ntempering\, adaptive MCMC\, the Containment property\, and the notion of\ nadversarial Markov chains.  The ideas will be illustrated using the\nsim ple graphical example available at probability.ca/met.  No\nparticular ba ckground knowledge will be assumed.\n\n-------------------------\n DTSTAMP:20250517T093636Z END:VEVENT END:VCALENDAR