@article {30074,
title = {Path integral simulations of confined parahydrogen molecules within clathrate hydrates: merging low temperature dynamics with the zero temperature limit},
journal = {Journal of Chemical Physics},
volume = {156},
year = {2022},
pages = {014303},
abstract = {Clathrate hydrates, or cages comprised solely of water molecules, have long been investigated as a clean storage facility for hydrogen molecules. A breakthrough occurred when hydrogen molecules were experimentally placed within a structure-II clathrate hydrate, which sparked much interest to determine their feasibility for energy storage [Mao\ et al., Science\ 297, 2247{\textendash}2249 (2002)]. We use Path Integral Molecular Dynamics (PIMD) and Langevin equation Path Integral Ground State (LePIGS) for finite temperature and zero-temperature studies, respectively, to determine parahydrogen occupancy properties in the small dodecahedral (512) and large hexakaidecahedral (51264) sized cages that comprise the structure-II unit cell. We look at energetic and structural properties of small clusters of hydrogen, treated as point-like particles, confined within each of the different sized clathrates, and treated as rigid, to determine energetic and structural properties in the zero-temperature limit. Our predicted hydrogen occupancy within these two cage sizes is consistent with previous literature values. We then calculate the energies as a function of temperature and merge the low temperature results calculated using finite temperature PIMD with the zero-temperature results using LePIGS, demonstrating that the two methods are compatible.},
author = {Matthew Schmidt and Jayme Millar and Pierre-Nicholas Roy}
}