%0 Journal Article %J Journal of Hydrology %D 2024 %T Generative deep learning for probabilistic streamflow forecasting: conditional variational auto-encoder %A Jahangir, M.S. %A Quilty, J. %B Journal of Hydrology %V 629 %P 130498 %G eng %U https://www.sciencedirect.com/science/article/pii/S0022169423014403 %0 Journal Article %J Journal of Hydrology %D 2023 %T Bayesian extreme learning machines for hydrological prediction uncertainty %A Quilty, J. %A Jahangir, M.S. %A You, J. %A Hughes, H. %A Hah, D. %A Tzoganakis, I. %B Journal of Hydrology %V 626 %P 130138 %G eng %U https://www.sciencedirect.com/science/article/pii/S0022169423010806 %0 Journal Article %J Journal of Hydrology %D 2023 %T A quantile-based encoder-decoder framework for multi-step ahead runoff forecasting %A Jahangir, M.S. %A You, J. %A Quilty, J. %B Journal of Hydrology %V 619 %P 129269 %G eng %U https://www.sciencedirect.com/science/article/pii/S0022169423002111 %0 Journal Article %J Pedosphere %D 2022 %T Comparing the Soil Conservation Service model with new machine learning algorithms for predicting cumulative infiltration in semi-arid regions %A Khabat Khosravi %A TT Phuong %A Rahim Barzegar %A John Quilty %A Mohammad T Alami %B Pedosphere %G eng %U https://www.sciencedirect.com/science/article/pii/S1002016022000157 %0 Journal Article %J Stochastic Environmental Research and Risk Assessment %D 2022 %T Investigating the impact of input variable selection on daily solar radiation prediction accuracy using data-driven models: a case study in northern Iran %A Mohammad Sina Jahangir %A Seyed Mostafa Biazar %A David Hah %A John Quilty %A Mohammad Isazadeh %B Stochastic Environmental Research and Risk Assessment %V 36 %P 225-249 %G eng %U https://link.springer.com/article/10.1007/s00477-021-02070-5 %N 1 %0 Journal Article %J Environmental Modelling & Software %D 2022 %T A stochastic conceptual-data-driven approach for improved hydrological simulations %A John M Quilty %A Anna E Sikorska-Senoner %A David Hah %B Environmental Modelling & Software %V 149 %P 105326 %G eng %U https://www.sciencedirect.com/science/article/pii/S1364815222000329 %0 Generic %D 2021 %T Improving Deep Learning hydrological time series modeling using Gaussian Filter preprocessing %A Rahim Barzegar %A Jan Adamowski %A John Quilty %B EGU General Assembly 2021 %P EGU21-1644 %G eng %U https://meetingorganizer.copernicus.org/EGU21/EGU21-1644.html %0 Journal Article %J Journal of Hydrology %D 2021 %T Improving GALDIT-based groundwater vulnerability predictive mapping using coupled resampling algorithms and machine learning models %A R Barzegar %A S Razzagh %A J Quilty %A J Adamowski %A HK Pour %A MJ Booij %B Journal of Hydrology %V 598 %P 126370 %G eng %U https://www.sciencedirect.com/science/article/abs/pii/S0022169421004170 %0 Generic %D 2021 %T Improving hydrological forecasts through temporal hierarchal reconciliation %A Mohammad Sina Jahangir %A John Quilty %B EGU General Assembly 2021 %P EGU21-13303 %G eng %U https://meetingorganizer.copernicus.org/EGU21/EGU21-13303.html %0 Generic %D 2021 %T Learning from one’s errors: A data-driven approach for mimicking an ensemble of hydrological model residuals %A John M Quilty %A Anna E Sikorska-Senoner %B EGU General Assembly 2021 %P EGU21-13244 %G eng %U https://meetingorganizer.copernicus.org/EGU21/EGU21-13244.html %0 Journal Article %J Environmental Modelling & Software %D 2021 %T A maximal overlap discrete wavelet packet transform integrated approach for rainfall forecasting–A case study in the Awash River Basin %A John Quilty %A Jan Adamowski %B Environmental Modelling & Software %P 105119 %G eng %U https://www.sciencedirect.com/science/article/abs/pii/S1364815221001626 %0 Journal Article %J Environmental Modelling & Software %D 2021 %T A novel ensemble-based conceptual-data-driven approach for improved streamflow simulations %A Anna E Sikorska-Senoner %A John M Quilty %B Environmental Modelling & Software %P 105094 %G eng %U https://www.sciencedirect.com/science/article/pii/S1364815221001377 %0 Journal Article %J Journal of Hydrology %D 2021 %T Probabilistic urban water demand forecasting using wavelet-based machine learning models %A Mostafa Rezaali %A John Quilty %A Abdolreza Karimi %B Journal of Hydrology %P 126358 %G eng %U https://www.sciencedirect.com/science/article/abs/pii/S0022169421004054 %0 Journal Article %J Water Resources Research %D 2020 %T Data assimilation for streamflow forecasting using extreme learning machines %A Boucher, Marie-Amélie %A Quilty, John %A Adamowski, J %B Water Resources Research %V 56 %P e2019WR026226 %G eng %0 Journal Article %J Advances in Water Resources %D 2020 %T Multiscale groundwater level forecasting: Coupling new machine learning approaches with wavelet transforms %A Rahman, A. T. M. S. %A Hosono, T. %A Quilty, J.M. %A Das, J. %A Basak, A. %B Advances in Water Resources %V 141 %P 103595 %G eng %0 Journal Article %J Environmental Modelling & Software %D 2020 %T A stochastic wavelet-based data-driven framework for forecasting uncertain multiscale hydrological and water resources processes %A Quilty, John %A Adamowski, Jan %B Environmental Modelling & Software %V 130 %P 104718 %G eng %0 Journal Article %J EGU General Assembly Conference Abstracts %D 2020 %T Using a boundary-corrected wavelet transform coupled with machine learning and hybrid deep learning approaches for multi-step water level forecasting in Lakes Michigan and Ontario %A Rahim Barzegar %A Jan Adamowski %A John Quilty %A Mohammad Taghi Aalami %B EGU General Assembly Conference Abstracts %P 4233 %G eng %U https://scholar.google.ca/scholar?oi=bibs&cluster=8698411343122623888&btnI=1&hl=en %0 Journal Article %J Journal of Hydrology %D 2020 %T Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones %A D. Roy %A Rahim Barzegar %A John Quilty %A Jan Adamowski %B Journal of Hydrology %V 591 %P 125509 %G eng %U https://scholar.google.ca/scholar?oi=bibs&cluster=15103368238207897622&btnI=1&hl=en %0 Journal Article %J Agricultural and Forest Meteorology %D 2019 %T On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction %A Ghaemi, Alireza %A Rezaie-Balf, Mohammad %A Adamowski, Jan %A Kisi, Ozgur %A Quilty, John %B Agricultural and Forest Meteorology %I Elsevier %V 278 %P 107647 %G eng %0 Journal Article %J Agricultural Water Management %D 2019 %T Coupling the maximum overlap discrete wavelet transform and long short-term memory networks for irrigation flow forecasting %A Mouatadid, Soukayna %A Adamowski, Jan F %A Tiwari, Mukesh K %A Quilty, John M %B Agricultural Water Management %I Elsevier %V 219 %P 72–85 %G eng %0 Journal Article %J Water Resources Research %D 2019 %T A stochastic data-driven ensemble forecasting framework for water resources: A case study using ensemble members derived from a database of deterministic wavelet-based models %A Quilty, John %A Adamowski, Jan %A Boucher, Marie-Amélie %B Water Resources Research %V 55 %P 175–202 %G eng %0 Journal Article %J Journal of Hydrology %D 2019 %T Using Bootstrap ELM and LSSVM Models to Estimate River Ice Thickness in the Mackenzie River Basin in the Northwest Territories, Canada %A Barzegar, Rahim %A Ghasri, Mahsa %A Qi, Zhiming %A Quilty, John %A Adamowski, Jan %B Journal of Hydrology %I Elsevier %G eng %0 Journal Article %J Journal of hydrology %D 2018 %T Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework %A Quilty, John %A Adamowski, Jan %B Journal of hydrology %I Elsevier %V 563 %P 336–353 %G eng %0 Thesis %D 2018 %T An Ensemble Wavelet-based Stochastic Data-driven Framework for Addressing Nonlinearity, Multiscale Change, and Uncertainty in Water Resources Forecasting %A Quilty, John %I McGill University Libraries %G eng %9 phd %0 Conference Paper %B EGU General Assembly Conference Abstracts %D 2018 %T Information-theoretic-based input variable selection for hydrology and water resources %A Quilty, John %A Adamowski, Jan %A Khalil, Bahaa %A Rathinasamy, Maheswaran %B EGU General Assembly Conference Abstracts %V 20 %P 2379 %G eng %0 Conference Paper %B EGU General Assembly Conference Abstracts %D 2018 %T A stochastic data-driven forecasting framework using wavelets for forecasting uncertain hydrological and water resources processes %A Quilty, John %A Adamowski, Jan %B EGU General Assembly Conference Abstracts %V 20 %P 2380 %G eng %0 Journal Article %J Stochastic environmental research and risk assessment %D 2017 %T Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model %A Deo, Ravinesh C %A Tiwari, Mukesh K %A Adamowski, Jan F %A Quilty, John M %B Stochastic environmental research and risk assessment %I Springer Berlin Heidelberg %V 31 %P 1211–1240 %G eng %0 Conference Paper %B EGU General Assembly Conference Abstracts %D 2017 %T Hydrological data assimilation using Extreme Learning Machines %A Boucher, Marie-Amélie %A Quilty, John %A Adamowski, Jan %B EGU General Assembly Conference Abstracts %V 19 %P 5722 %G eng %0 Journal Article %J Environmental research %D 2017 %T Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle %A Deo, Ravinesh C %A Downs, Nathan %A Parisi, Alfio V %A Adamowski, Jan F %A Quilty, John M %B Environmental research %I Academic Press %V 155 %P 141–166 %G eng %0 Journal Article %J Water Resources Research %D 2016 %T Bootstrap rank-ordered conditional mutual information (broCMI): A nonlinear input variable selection method for water resources modeling %A Quilty, John %A Adamowski, Jan %A Khalil, Bahaa %A Rathinasamy, Maheswaran %B Water Resources Research %V 52 %P 2299–2326 %G eng %0 Journal Article %J Atmospheric research %D 2016 %T Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction %A Belayneh, A %A Adamowski, J %A Khalil, B %A Quilty, J %B Atmospheric research %I Elsevier %V 172 %P 37–47 %G eng %0 Journal Article %J Journal of Hydrology %D 2016 %T Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq %A Yaseen, Zaher Mundher %A Jaafar, Othman %A Deo, Ravinesh C %A Kisi, Ozgur %A Adamowski, Jan %A Quilty, John %A El-Shafie, Ahmed %B Journal of Hydrology %I Elsevier %V 542 %P 603–614 %G eng %0 Journal Article %J Journal of Hydrology %D 2015 %T The application of dynamic linear bayesian models in hydrological forecasting: varying coefficient regression and discount weighted regression %A Ciupak, Maurycy %A Ozga-Zielinski, Bogdan %A Adamowski, Jan %A Quilty, John %A Khalil, Bahaa %B Journal of Hydrology %I Elsevier %V 530 %P 762–784 %G eng %0 Conference Paper %B AGU Fall Meeting Abstracts %D 2015 %T Stochastic weather inputs for improved urban water demand forecasting: application of nonlinear input variable selection and machine learning methods %A Quilty, J %A Adamowski, JF %B AGU Fall Meeting Abstracts %G eng %0 Conference Paper %B AGU Fall Meeting Abstracts %D 2014 %T Forecasting Urban Water Demand via Machine Learning Methods Coupled with a Bootstrap Rank-Ordered Conditional Mutual Information Input Variable Selection Method %A Adamowski, JF %A Quilty, J %A Khalil, B %A Rathinasamy, M %B AGU Fall Meeting Abstracts %G eng %0 Journal Article %J Expert systems with applications %D 2014 %T Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS %A Goyal, Manish Kumar %A Bharti, Birendra %A Quilty, John %A Adamowski, Jan %A Pandey, Ashish %B Expert systems with applications %I Elsevier %V 41 %P 5267–5276 %G eng %0 Conference Paper %B CSCE 3rd Specialty Conference on Disaster Prevention and Mitigation %D 2013 %T Forecasting drought via bootstrap and machine learning methods %A Belayneh, Anteneh %A Adamowski, J %A Khalil, Bahaa %B CSCE 3rd Specialty Conference on Disaster Prevention and Mitigation %G eng