BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20250309T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20241103T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:68299bffa9e88 DTSTART;TZID=America/Toronto:20250523T133000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250523T143000 URL:/pure-mathematics/events/dynamics-and-ramsey-learni ng-seminar SUMMARY:Dynamics and Ramsey Learning Seminar CLASS:PUBLIC DESCRIPTION:Summary \n\nANDY ZUCKER\, UNIVERSITY OF WATERLOO\n\nOn Ramsey D egrees\n\nWe discuss some dynamical reformulations of the notion of Ramsey \ndegree. This meeting also serves as an organizational meeting to plan\nt he rest of the learning seminar.\n\nMC 5417\n DTSTAMP:20250518T083615Z END:VEVENT BEGIN:VEVENT UID:68299bffadee0 DTSTART;TZID=America/Toronto:20250521T130000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250521T140000 URL:/pure-mathematics/events/student-number-theory-semi nar-80 SUMMARY:Student Number Theory Seminar CLASS:PUBLIC DESCRIPTION:Summary \n\nAJ FONG\, UNIVERSITY OF WATERLOO\n\nThe Markov equa tion and birational geometry\n\nWe will briefly talk about the basics on t he Markov equation and its\nsolutions\, and producing Hirzebruch--Jung con tinued fractions from\ntheir weights. We will also describe some connectio ns to certain\ndegenerations of the complex projective plane. This talk is based on\nwork of Urzúa and Zúñiga. \n\nMC 5417\n DTSTAMP:20250518T083615Z END:VEVENT BEGIN:VEVENT UID:68299bffae874 DTSTART;TZID=America/Toronto:20250523T170000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250523T180000 URL:/pure-mathematics/events/graduate-student-colloquiu m-23 SUMMARY:Graduate Student Colloquium CLASS:PUBLIC DESCRIPTION:Summary \n\nFRANCISCO VILLACIS\, UNIVERSITY OF WATERLOO\n\nA De ep Dive into Mathematicians’ Questionable Outfits\n\nBeing able to prove the most impressive theorems and having a good\nsense of fashion need not be mutually exclusive - except it might be?\nThis will be up to you to ju dge in this talk. Together\, we’ll apply\nthe most unscientific of metho dologies to create a tier list of\nmathematicians based solely on their dr essing style - from Euclid’s\ntimeless toga to Grothendieck’s \"I’ve been living in a forest for\nfive years\" aesthetic. Be sure to bring you r best outfits\, otherwise\nyou might end up in a bored grad student's tie r list one day.\n\nMC 5479\n\n(snacks from 4:00pm)\n DTSTAMP:20250518T083615Z END:VEVENT BEGIN:VEVENT UID:68299bffaf11d DTSTART;TZID=America/Toronto:20250522T143000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250522T154500 URL:/pure-mathematics/events/differential-geometry-work ing-seminar-143 SUMMARY:Differential Geometry Working Seminar CLASS:PUBLIC DESCRIPTION:Summary \n\nALEX PAWELKO\, UNIVERSITY OF WATERLOO\n\nThe Formal Kaehler Structure of the G2 Knot Space\n\nWe will explore the usual suspe cts of the moduli space of knots\nembeddable in a G2 manifold\, based upon the work of Brylinski for the\nanalogous space corresponding to the 3-dim ensional cross product. This\ngives an infinite-dimensional \"formally Kae hler\" manifold\, which one\ncan consider Kaehler reduction on. If time pe rmits\, we will gesture\nvaguely at considerations from gauge theory and g eometric quantization\nthat motivate many interesting questions in the cas e of G2 manifolds.\n\nMC 5403\n DTSTAMP:20250518T083615Z END:VEVENT BEGIN:VEVENT UID:68299bffaf8cd DTSTART;TZID=America/Toronto:20250522T130000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250522T141500 URL:/pure-mathematics/events/differential-geometry-work ing-seminar-142 SUMMARY:Differential Geometry Working Seminar CLASS:PUBLIC DESCRIPTION:Summary \n\nFAISAL ROMSHOO\, UNIVERSITY OF WATERLOO\n\nSymmetry groups\, moment maps and cohomogeneity one special Lagrangians\nin C^m\n \nWe will discuss the relationship between symmetries and moment maps as\n explained in arXiv:math/0008021 and how this allows us to construct\ncohom ogeneity one special Lagrangians in C^m. Time permitting\, we will\ndiscus s some examples of SL m-folds in C^m.\n\nMC 5403\n DTSTAMP:20250518T083615Z END:VEVENT BEGIN:VEVENT UID:68299bffb00b3 DTSTART;TZID=America/Toronto:20250515T143000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250515T154500 URL:/pure-mathematics/events/differential-geometry-work ing-seminar-141 SUMMARY:Differential Geometry Working Seminar CLASS:PUBLIC DESCRIPTION:Summary \n\nFACUNDO CAMANO\, UNIVERSITY OF WATERLOO\n\nConverge nce Results for Taub-NUT and Eguchi-Hanson spaces\n\nWe define multi-Taub- NUT and multi-Eguchi-Hanson spaces and look at\nGromov-Hausdorff convergen ces involving these spaces.\n\nMC 5403\n DTSTAMP:20250518T083615Z END:VEVENT BEGIN:VEVENT UID:68299bffb088c DTSTART;TZID=America/Toronto:20250515T130000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250515T141500 URL:/pure-mathematics/events/differential-geometry-work ing-seminar-140 SUMMARY:Differential Geometry Working Seminar CLASS:PUBLIC DESCRIPTION:Summary \n\nJUSTIN FUS\, UNIVERSITY OF WATERLOO\n\nThe KKS Form and Symplectic Geometry of Coadjoint Orbits\n\nA compact Lie group acts o n its Lie algebra dual via the coadjoint\nrepresentation. In this talk\, w e will explore how the coadjoint orbits\nof this representation carry a na tural symplectic structure called the\nKirillov-Kostant-Souriau (KKS) form . The KKS form is preserved by the\naction. If time permits\, we will show that there is a moment map for\nthe action that coincides with the inclus ion map of the orbit. A\nworked example for SU(2) will be performed.\n\nMC 5403\n DTSTAMP:20250518T083615Z END:VEVENT BEGIN:VEVENT UID:68299bffb10d5 DTSTART;TZID=America/Toronto:20250520T140000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250520T153000 URL:/pure-mathematics/events/computability-learning-sem inar-146 SUMMARY:Computability Learning Seminar CLASS:PUBLIC DESCRIPTION:Summary \n\nJOEY LAKERDAS-GAYLE\, UNIVERSITY OF WATERLOO\n\nEff ective Algebra 1\n\nWe will begin learning about recursive groups followin g Chapter 8 of\nYuri Manin's \"A Course in Mathematical Logic for Mathemat icians\".\n\nMC 5417\n DTSTAMP:20250518T083615Z END:VEVENT BEGIN:VEVENT UID:68299bffb189d DTSTART;TZID=America/Toronto:20250516T110000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250516T120000 URL:/pure-mathematics/events/algebraic-geometry-working -seminar-93 SUMMARY:Algebraic geometry working seminar CLASS:PUBLIC DESCRIPTION:Summary \n\nJIAHUI HUANG\, UNIVERSITY OF WATERLOO\n\nMotivic in tegration for schemes\, DM stacks\, and Artin stacks.\n\nWe give an overvi ew of motivic integration and its generalization to\nstacks. Early motivat ions for motivic integration involve singularity\ntheory and the monodromy conjecture. We will explain how the change of\nvariable formula works\, a nd how it generalizes to the stack case.\nMotivic integration for stacks w ill use twisted or warped arcs\, and we\nshall give a summary of the const ruction of the twisted arc space for\nDM stacks.\n\nMC 5403\n DTSTAMP:20250518T083615Z END:VEVENT BEGIN:VEVENT UID:68299bffb2090 DTSTART;TZID=America/Toronto:20250514T130000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250514T140000 URL:/pure-mathematics/events/student-number-theory-semi nar-79 SUMMARY:Student Number Theory Seminar CLASS:PUBLIC DESCRIPTION:Summary \n\nZHENCHAO GE\, UNIVERSITY OF WATERLOO\n\nAn additive property for product sets in finite fields.\n\nLagrange's Four Square The orem states that every natural number can be\nwritten as a sum of four squ ares\, i.e. squares form an additive basis\nof order 4. Cauchy observed th at in a finite field F with q elements\,\nsquares form an additive basis o f order 2. Bourgain further\ngeneralized the problem and proved that for a ny subset A in F\, writing\nAA={aa': a\,a'∈ A}\, we have 3AA=F whenever |A|>q^{3/4}. \n\nIn general\, for subsets A\,B in F with |A||B|>q\, one m ight ask that how\nmany copies of AB are enough to cover the entire space? The current\nrecord of this problem is due to Glibichuk and Rudnev. Using basic\nFourier analysis tools\, they achieved 10AB=F unconditionally and 8AB=F\nassuming symmetry (or anti-symmetry).\n\nIn this talk\, we will (ho pefully) go through the paper of Glibichuk\nand Rudnev.\n\nMC 5417\n DTSTAMP:20250518T083615Z END:VEVENT END:VCALENDAR