BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20250309T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20241103T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:686d405f61469 DTSTART;TZID=America/Toronto:20250610T100000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250610T110000 URL:/pure-mathematics/events/number-theory-seminar-146 SUMMARY:Number Theory Seminar CLASS:PUBLIC DESCRIPTION:Summary \n\nMICAH MILINOVICH\, UNIVERSITY OF MISSISSIPPI\n\nHil bert spaces and low-lying zeros of L-functions\n\nGiven a family of L-func tions\, there has been a great deal of interest\nin estimating the proport ion of the family that does not vanish at\nspecial points on the critical line. Conjecturally\, there is a\nsymmetry type associated to each family which governs the distribution\nof low-lying zeros (zeros near the real ax is). Generalizing a problem\nof Iwaniec\, Luo\, and Sarnak (2000)\, we add ress the problem of\nestimating the proportion of non-vanishing in a famil y of L-functions\nat a low-lying height on the critical line (measured by the analytic\nconductor). We solve the Fourier optimization problems that arise\nusing the theory of reproducing kernel Hilbert spaces of entire\nfu nctions (there is one such space associated to each symmetry type)\,\nand we can explicitly construct the associated reproducing kernels. If\ntime a llows\, we will also address the problem of estimating the height\nof the \"lowest\" low-lying zero in a family for all symmetry types.\nThese resul ts are based on joint work with Emanuel Carneiro and\nAndrés Chirre.\n\nM C 5417\n DTSTAMP:20250708T155927Z END:VEVENT END:VCALENDAR