BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20240310T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20231105T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:6825f02b87ee8 DTSTART;TZID=America/Toronto:20240328T143000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240328T153000 URL:/pure-mathematics-geometry-topology/events/paraboli c-gap-theorems-yang-mills-functional SUMMARY:Parabolic gap theorems for the Yang-Mills functional CLASS:PUBLIC DESCRIPTION:Summary \n\nALEX WALDRON\, UNIVERSITY OF WISCONSIN-MADISON\n\nG iven a principal bundle over a compact Riemannian 4-manifold or\nspecial-h olonomy manifold\, it is natural to ask whether a uniform gap\nexists betw een the instanton energy and that of any non-minimal\nYang-Mills connectio n. This question is quite open in general\,\nalthough positive results exi st in the literature. We'll review\nseveral of these gap theorems and stre ngthen them to statements of the\nfollowing type: the space of all connect ions below a certain energy\ndeformation retracts (under Yang-Mills flow) onto the space of\ninstantons. As applications\, we recover a theorem of T aubes on\npath-connectedness of instanton moduli spaces on the 4-sphere\, and\nobtain a method to construct instantons on quaternion-Kähler\nmanifo lds with positive scalar curvature.\n\nMC 5417\n DTSTAMP:20250515T134619Z END:VEVENT BEGIN:VEVENT UID:6825f02b8aed5 DTSTART;TZID=America/Toronto:20240321T143000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240321T153000 URL:/pure-mathematics-geometry-topology/events/finitene ss-monodromy-fibered-calabi-yau-threefolds SUMMARY:Finiteness of monodromy for fibered Calabi-Yau threefolds CLASS:PUBLIC DESCRIPTION:Summary \n\nFRANÇOIS GREER\, MICHIGAN STATE UNIVERSITY\n\nAn o ld question going back to S.T. Yau asks whether there are finitely\nmany d iffeomorphism types for smooth projective Calabi-Yau manifolds\nof a given dimension. The answer is affirmative for dimensions one and\ntwo (ellipti c curves and K3 surfaces). It has recently been settled\nfor Calabi-Yau th reefolds admitting elliptic fibrations. We discuss\nthe case of CY3’s ad mitting abelian surface or K3 fibrations. \n\nMC 5417\n DTSTAMP:20250515T134619Z END:VEVENT BEGIN:VEVENT UID:6825f02b8b7d8 DTSTART;TZID=America/Toronto:20240314T143000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240314T153000 URL:/pure-mathematics-geometry-topology/events/steady-g radient-kahler-ricci-solitons-and-calabi-yau-metrics SUMMARY:Steady gradient Kähler-Ricci solitons and Calabi-Yau metrics on C^ n CLASS:PUBLIC DESCRIPTION:Summary \n\nCHARLES CIFARELLI\, CIRGET & STONY BROOK\n\nI will present recent joint work with V. Apostolov on a new\nconstruction of co mplete steady gradient Kähler-Ricci solitons on\nC^n\, using the theory o f hamiltonian 2 forms\, introduced by\nApostolov-Calderbank-Gauduchon-Tøn nesen-Friedman\, as an Ansatz. The\nmetrics come in families of two types with distinct geometric\nbehavior\, which we call Cao type and Taub-NUT ty pe. In particular\, the\nCao type and Taub-NUT type families have a volume growth rate of r^n\nand r^{2n-1}\, respectively. Moreover\, each Taub-NUT type family\ncontains a codimension 1 subfamily of complete Ricci-flat me trics.\n\nMC 5417\n DTSTAMP:20250515T134619Z END:VEVENT BEGIN:VEVENT UID:6825f02b8c07a DTSTART;TZID=America/Toronto:20240307T143000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240307T153000 URL:/pure-mathematics-geometry-topology/events/solitons -and-extended-bogomolny-equations-jumping-data SUMMARY:Solitons and the Extended Bogomolny Equations with Jumping Data CLASS:PUBLIC DESCRIPTION:Summary \n\nANDY ROYSTON\, PENN STATE UNIVERSITY\n\nThe extende d Bogomolny equations are a system of PDE's for a\nconnection and a triple t of Higgs fields on a three-dimensional space.\nThey are a hybrid of the Bogomolny equations and the Nahm equations.\nAfter reviewing how these lat ter systems arise in the study of\nmagnetic monopoles\, I will present an energy functional for which\nsolutions of the extended Bogomolny equations are minimizers in a\nfixed topological class. In this construction\, the connection and\nHiggs triplet are defined on all of R^3 and couple to addi tional\ndynamical fields localized on a two-plane that are analogous to\nj umping data in the Nahm equations. Solutions can therefore be\ninterpreted as finite-energy BPS solitons in a three-dimensional\ntheory with a plana r defect. This talk is based on work done in\ncollaboration with Sophia Do mokos.\n\nMC 5417\n DTSTAMP:20250515T134619Z END:VEVENT BEGIN:VEVENT UID:6825f02b8c882 DTSTART;TZID=America/Toronto:20240305T143000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240305T153000 URL:/pure-mathematics-geometry-topology/events/multipli cative-higgs-bundles-monopoles-and-involutions SUMMARY:Multiplicative Higgs bundles\, monopoles and involutions CLASS:PUBLIC DESCRIPTION:Summary \n\nGUILLERMO GALLEGO\, UNIVERSIDAD COMPLUTENSE DE MAD RID\n\nMultiplicative Higgs bundles are a natural analogue of Higgs bundle s\non Riemann surfaces\, where the Higgs field now takes values on the\nad joint group bundle\, instead of the adjoint Lie algebra bundle. In\nthe wo rk of Charbonneau and Hurtubise\, they have been related to\nsingular mono poles over the product of a circle with the Riemann\nsurface.\n\nIn this t alk we study the natural action of an involution of the group\non the modu li space of multiplicative Higgs bundles\, also from the\npoint of view of monopoles. This provides a \"multiplicative analogue\"\nof the theory of Higgs bundles for real groups.\n\nMC 5403\n DTSTAMP:20250515T134619Z END:VEVENT BEGIN:VEVENT UID:6825f02b8d065 DTSTART;TZID=America/Toronto:20240215T143000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240215T153000 URL:/pure-mathematics-geometry-topology/events/calderon -problem-connections-coupled-spinors SUMMARY:The Calderón problem for U(N)-connections coupled to spinors CLASS:PUBLIC DESCRIPTION:Summary \n\nCARLOS VALERO\, MCGILL UNIVERSITY\n\nThe Calderón problem refers to the question of whether one can\ndetermine the Riemannia n metric on a manifold with boundary from its\n\"Dirichlet-to-Neumann (DN) map\"\, which maps a function on the boundary\nto the normal derivative o f its harmonic extension. In this talk\, we\ndefine the analogue of the DN map for the spinor Laplacian twisted by\na unitary connection and show th at it is a pseudodifferential operator\nof order 1\, whose symbol determin es the Taylor series of the metric\nand connection at the boundary. We go on to show that if all the data\nare real-analytic\, then the spinor DN ma p determines the connection\nmodulo gauge.\n\nMC 5417\n DTSTAMP:20250515T134619Z END:VEVENT BEGIN:VEVENT UID:6825f02b8d890 DTSTART;TZID=America/Toronto:20240229T143000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240229T153000 URL:/pure-mathematics-geometry-topology/events/hyperbol ic-bloch-transform SUMMARY:On the hyperbolic Bloch transform CLASS:PUBLIC DESCRIPTION:Summary \n\nÁKOS NAGY\, BEIT CANADA\n\nMotivated by recent the oretical and experimental developments in the\nphysics of hyperbolic cryst als\, I will introduce the noncommutative\nBloch transform for Fuchsian gr oups which I will call the hyperbolic\nBloch transform (HBT). The HBT tran sforms wave functions on the\nhyperbolic plane to sections of irreducible\ , flat\, Hermitian vector\nbundles over the orbit space and transforms the hyperbolic Laplacian\ninto the covariant Laplacian. I will prove that the HBT is injective\nand “asymptotically unitary”. If time permits\, I w ill talk about\npotential applications to hyperbolic band theory. This is a joint work\nwith Steve Rayan (arXiv:2208.02749).\n\nMC 5417\n DTSTAMP:20250515T134619Z END:VEVENT BEGIN:VEVENT UID:6825f02b8e0cd DTSTART;TZID=America/Toronto:20240208T143000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240208T153000 URL:/pure-mathematics-geometry-topology/events/bois-sin gularities-rational-singularities-and-beyond SUMMARY:Du Bois singularities\, rational singularities\, and beyond CLASS:PUBLIC DESCRIPTION:Summary \n\nWANCHUN ROSIE SHEN\, HARVARD UNIVERSITY\n\nWe surve y some extensions of the classical notions of Du Bois and\nrational singul arities\, known as the k-Du Bois and k-rational\nsingularities. By now\, t hese notions are well-understood for local\ncomplete intersections (lci). We explain the difficulties beyond the\nlci case\, and propose new definit ions in general to make further\nprogress in the theory. This is joint wor k (in progress) with Matthew\nSatriano\, Sridhar Venkatesh and Anh Duc Vo. \n\nMC 5417\n DTSTAMP:20250515T134619Z END:VEVENT BEGIN:VEVENT UID:6825f02b8e90f DTSTART;TZID=America/Toronto:20240201T143000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240201T153000 URL:/pure-mathematics-geometry-topology/events/local-no rmal-forms-complex-bk-geometry SUMMARY:Local normal forms in complex b^k geometry CLASS:PUBLIC DESCRIPTION:Summary \n\nMICHAEL FRANCIS\, WESTERN UNIVERSITY\n\nThe b-tange nt bundle (terminology due to Melrose) is defined so that\nits sections ar e smooth vector fields on the base manifold tangent\nalong a given hypersu rface. Complex b-manifolds\, studied by Mendoza\,\nare defined just like o rdinary complex manifolds\, replacing the usual\ntangent bundle by the b-t angent bundle. Recently\, a\nNewlander-Nirenberg theorem for b-manifolds w as obtained by\nFrancis-Barron\, building on Mendoza's work. This talk wil l discuss the\nextension of the latter result to the setting of b^k-geomet ry for k>1.\nThe original approach to b^k-geometry is due to Scott. A slig htly\ndifferent approach that allows for global holonomy phenomena not\npr esent in Scott's framework was introduced by Francis and\,\nindependently\ , by Bischoff-del Pino-Witte.\n\nThis seminar will be held both online and in person:\n\n* Room: MC 5417\n * Zoom link:\nhttps://uwaterloo.zoom.us/j /94186354814?pwd=NGpLM3B4eWNZckd1aTROcmRreW96QT09\n\n DTSTAMP:20250515T134619Z END:VEVENT BEGIN:VEVENT UID:6825f02b8f105 DTSTART;TZID=America/Toronto:20240125T143000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240125T153000 URL:/pure-mathematics-geometry-topology/events/moduli-s pace-solutions-dimensionally-reduced-kapustin-witten SUMMARY:The moduli space of solutions to the dimensionally reduced\nKapusti n-Witten equations on $\\Sigma\\times\\mathbb{R}_+$ CLASS:PUBLIC DESCRIPTION:Summary \n\nPANAGIOTIS DIMAKIS\, UNIVERSITÉ DU QUÉBEC À MONT RÉAL\, CIRGET\n\nSince their introduction in 2006\, the Kapustin-Witten ( KW) equations\nhave become the subject of a number of conjectures. Given a knot $K$\nembedded in a closed $3$-manifold $Y$\, the most prominent conj ecture\npredicts that the number of solutions to the KW equations on\n$Y\\ times\\mathbb{R}_+$ with boundary conditions determined by the\nembedding and with fixed topological charge\, is a topological\ninvariant of the kno t. A major obstacle with this conjecture is the\ndifficulty of constructin g solutions satisfying these boundary\nconditions. In this talk we assume $Y\\cong \\Sigma\\times\\mathbb{R}_+$\nand study solutions to the dimensio nally reduced KW equations with the\nrequired boundary conditions. We prov e that the moduli spaces are\ndiffeomorphic to certain holomorphic lagrang ian sub-manifolds inside\nthe moduli of Higgs bundles associated to $\\Sig ma$. Time permitting\,\nwe explain how one could use this result to constr uct knot invariants.\n\nMC 5417\n DTSTAMP:20250515T134619Z END:VEVENT END:VCALENDAR