The new technology called Pattern to Knowledge (P2K) can predict the binding of biosequences in seconds and potentially reduce bottlenecks in drug research.
P2K uses artificial intelligence (AI) to leverage deep knowledge from data instead of relying solely on classical machine learning.
鈥淧2K is a game changer given its ability to reveal subtle protein associations entangled in complex physiochemical environments and powerfully predict interactions based only on sequence data,鈥 said Andrew Wong, professor, Systems Design Engineering, and Founding Director, Centre for Pattern Analysis and Machine Intelligence (CPAMI). 鈥淭he ability to access this deep knowledge from proven scientific results will shift biological research going forward. P2K has the power to transform how data could be used in the future.鈥
Although a large amount of biological sequence data has been collected, extracting meaningful and useful knowledge hasn鈥檛 been easy. P2K algorithms tackle this challenge by disentangling multiple associations to identify and predict amino acid bindings that govern protein interactions. Since P2K is much faster than existing biosequence analysis software with almost 30听per cent听better prediction accuracy, it could significantly speed up the discovery of new drugs. By drawing information from databases in the Cloud, P2K could predict how tumour proteins and potential cancer treatments would interact.
Although still in the early prototype stage, Professor Wong and his team have made the听听system available publicly to researchers to start identifying new bio-sequence interactions.
鈥淧utting this AI technology in the hands of biomedical researchers will generate immediate results, which could be used for future scientific discoveries,鈥 said Antonio Sze-To, research associate, Systems Design Engineering, and co-inventor of P2K.
Since it analyzes sequential data, the applicability of P2K isn鈥檛 limited to biomedical research. P2K could benefit the financial industry by making useful associations and predictions for smart trading or the cybersecurity sector by predicting the likelihood of a potential cyber attack.
The research paper, 鈥溾 was recently published in Nature鈥檚 Scientific Reports.
About the University of 蓝莓视频
University of 蓝莓视频 is Canada鈥檚 top innovation university. With more than 36,000 students we are home to the world's largest co-operative education system of its kind. Our unmatched entrepreneurial culture, combined with an intensive focus on research, powers one of the top innovation hubs in the world. Find out more at听.
-30-
Media Contact:
Ryon Jones
University of 蓝莓视频
519-888-4567 ext. 30031