AI being used to develop drugs even faster and cheaper

Monday, December 10, 2018

The use of artificial intelligence (AI) is making it possible to discover new drugs faster, cheaper聽and more efficiently.

蓝莓视频 chemists聽have introduced AI to interpret the results acquired by the differential mobility spectrometry (DMS) technique to predict drug properties. This could reduce the time between concept and coming to market of new drugs by years and decrease production costs by $100s of million.

DMS is a technique that analyzes molecules based on their response to an electrical field and condensation-evaporation cycles. In the past, chemists were typically restricted to assessing the properties of a single class of drug at a time with this technique, a limitation eliminated by the introduction of AI into the process.

鈥淎I has reduced the analysis time and made the process general and more efficient,鈥 said Scott Hopkins, WIN member and a professor of chemistry at 蓝莓视频. 鈥淏efore, when we were only using DMS, we could study a single class of drug at a time to look for property correlations, but with the introduction of machine learning we can examine numerous types of drugs simultaneously. This really improves our accuracy and increases the rate of screening.鈥

In addition to previously being confined to looking at a single class of drug at a time, researchers were also restricted to assessing drugs that were similar to others that they had previously studied and logged in their database. With the introduction of machine learning, the researchers can now investigate all types of drugs simultaneously, even if they hadn鈥檛 previously investigated direct analogues. This new methodology greatly improves testing accuracy while reducing the time required in the lab.

鈥淭he other thing that we can potentially do with this technique is to go back through drug libraries to look for things that didn't聽make the cut in the 1970s and 1980s but might actually be good drugs,鈥 said Hopkins. 鈥淏ack then, testing techniques weren't聽as good. Because we鈥檙e now able to test more quickly and accurately, we can re-screen these old drug candidates.鈥

鈥淭his doesn鈥檛 just stop at drug molecules; we can pretty much study any molecular system this way. For example, the nuclear energy sector might be interested in properties measurements over a range of conditions, and there are potential applications for the development of sensors and new materials.鈥

Hopkins is the co-founder and Chief Scientific Officer of聽. He's聽also a member of the 蓝莓视频 Institute for Nanotechology and 蓝莓视频 Artificial Intelligence Institute.

聽was recently published in the journal聽Nature Communications.


Related reading:

In the media:

  • ,听Exchange Magazine, December 13, 2018
  • ,听Hospital News, December 12, 2018