Quantum sensing /institute-for-quantum-computing/ en Year of Quantum Across Canada Conference /institute-for-quantum-computing/events/yqac-conference <span class="field field--name-title field--type-string field--label-hidden">Year of Quantum Across Canada Conference</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/e2martin" typeof="schema:Person" property="schema:name" datatype="" xml:lang="">Emily Martin</span></span> <span class="field field--name-created field--type-created field--label-hidden">Wed, 08/13/2025 - 15:39</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="enlarged">The Institute for Quantum Computing (IQC) and the Perimeter Institute for Theoretical Physics will jointly host a conference celebrating the 100 year anniversary of the discovery of quantum mechanics.</p> <p class="enlarged">The conference will celebrate and aim to strengthen the quantum information science community in Canada and beyond, by bringing together leading Canadian researchers as well as members of the broader quantum community. The program will highlight the fundamental advances being made in quantum information theory and how these advances lead to applications.</p> <p class="enlarged">We will also be hosting a poster session on Tuesday, October 7 at IQC. Poster submissions are welcome and will be reviewed by the program committee. Some posters may be selected to present as a contributed talk.</p> </div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none uw-section-alignment--top-align-content layout layout--uw-2-col even-split"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Conference topics</h2> <ul><li>Quantum metrology</li> <li>Quantum simulation and quantum advantage</li> <li>Quantum error-correction and fault tolerance</li> <li>Quantum complexity and algorithms</li> <li>Quantum communication and networks</li> <li>Quantum cryptography</li> <li>Quantum information in quantum matter and quantum gravity </li> </ul><p><mark>Participation is open to all scientists who are interested in the conference topics. </mark></p> </div> </div> </div> </div> <div class="layout__region layout__region--second"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Date</h2> <p>October 6 to 9, 2025</p> <h2>Location</h2> <p>Perimeter Institute for Theoretical Physics, PI/1-100 - Theatre</p> <p>31 Caroline Street North, À¶Ý®ÊÓÆµ, Ontario, Canada, N2L 2Y5</p> <h2>Registration deadlines</h2> <ul><li>In-Person registration closes: <strong>September 22</strong> at 23:59 ET</li> <li>Virtual registration closes: <strong>October 6</strong> at 23:59 ET</li> <li>Abstract submission closes: <strong>September 15</strong> at 23:59 ET</li> </ul></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="block block-layout-builder block-inline-blockuw-cbl-call-to-action"> <div class="uw-cta "> <div class="uw-cta__center-wrapper"> <aside class="uw-cta__aside org-default"><a href="https://events.perimeterinstitute.ca/event/1107/registrations/" class="uw-cta__link"> <div class="uw-cta__wrapper"> <div class="call-to-action-theme-org-default"> <div class="uw-cta__text uw-cta__text--small">IN-PERSON AND VIRTUAL PARTICIPATION AVAILABLE</div> <div class="uw-cta__text uw-cta__text--big">Register now</div> </div> </div> </a> </aside><aside class="uw-cta__aside org-default"><a href="https://events.perimeterinstitute.ca/event/1107/abstracts/" class="uw-cta__link"> <div class="uw-cta__wrapper"> <div class="call-to-action-theme-org-default"> <div class="uw-cta__text uw-cta__text--small">SUBMISSIONS ARE DUE SEPTEMBER 15</div> <div class="uw-cta__text uw-cta__text--big">Submit an abstract</div> </div> </div> </a> </aside></div> </div> </div> </div> </section><section class="uw-contained-width uw-contained-width--wide uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none uw-section-alignment--top-align-content uw-section__background--org-stp layout layout--uw-2-col even-split uw-section__background-color"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Speakers</h2> <ul><li><strong>Christian Bauer</strong> - Lawrence Berkeley National Laboratory </li> <li><strong>Sergey Bravyi</strong> - IBM Research - Thomas J. Watson Research Center</li> <li><strong>Matthew Fisher</strong> - University of California, Santa Barbara</li> <li><strong>Masahito Hayashi</strong> - Chinese University of Hong Kong</li> <li><strong>Dakshita Khurana</strong> - University of Illinois Urbana-Champaign</li> <li><strong>Aleksander Kubica </strong>- Yale University</li> <li><strong>Brian Swingle</strong> - Brandeis University</li> <li><strong>Yu-Xiang Yang</strong> - The University of Hong Kong</li> </ul></div> </div> </div> </div> <div class="layout__region layout__region--second"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Co-Chairpersons</h2> <ul><li>Marcela Carena - Perimeter Institute, University of Chicago, Fermilab</li> <li>Norbert Lütkenhaus - University of À¶Ý®ÊÓÆµ, IQC</li> </ul></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2><span>Scientific organizers and conveners</span></h2> </div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none uw-section-alignment--top-align-content layout layout--uw-2-col even-split"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <ul><li>Alexandre Blais - Université de Sherbrook</li> <li>Anne Broadbent - University of Ottawa</li> <li>Shohini Ghose - Quantum Algorithms Institute</li> <li>David Gosset - University of À¶Ý®ÊÓÆµ, IQC, Perimeter Institute</li> <li>Tim Hsieh - Perimeter Institute</li> <li>Raymond Laflamme - University of À¶Ý®ÊÓÆµ, IQC</li> <li>Alex May - Perimeter Institute</li> </ul></div> </div> </div> </div> <div class="layout__region layout__region--second"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <ul><li>Christine Muschik - University of À¶Ý®ÊÓÆµ, IQC, Perimeter Institute</li> <li>John Preskill - CalTech</li> <li>Barry Sanders - University of Calgary, Quantum City </li> <li>Aephraim Steinberg - University of Toronto, CQIQC</li> <li>Beni Yoshida - Perimeter Institute</li> <li>Peter Zoller - University of Innsbruck, IQOQI</li> <li>Sisi Zhou - Perimeter Institute</li> </ul></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Got questions? We're here to help!</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <ul><li>If you have questions about the call for abstracts with respect to your research, please contact <a href="mailto:amay@perimeterinstitute.ca">Alex May</a>.</li> <li>Any logistical questions about the application process, the website or decision timelines should be directed to <a href="mailto:conferences@perimeterinstitute.ca">conferences@perimeterinstitute.ca</a> or <a href="mailto:iqc.events@uwaterloo.ca">iqc.events@uwaterloo.ca</a>.</li> </ul></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-section__background--neutral uw-column-separator--none layout layout--uw-1-col uw-section__background-color"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="highlight"><em>The Institute for Quantum Computing (IQC) is proud to support <a href="https://iyqcda.cap.ca/">IYQ Canada</a> and the <a href="https://quantum2025.org/about/">International Year of Quantum Science & Technology (IYQ)</a>. </em></p> <div class="uw-media media media--type-uw-mt-image media--view-mode-uw-vm-standard-image align-center" data-height="200" data-width=""> <img src="/institute-for-quantum-computing/sites/default/files/uploads/images/homepage-banner-potential-3-2.png" width="355.55555555556" height="200" alt="International Year of Quantum Science and Technology logo" loading="lazy" typeof="foaf:Image" /></div> </div> </div> </div> </div> </section> Wed, 13 Aug 2025 19:39:48 +0000 Emily Martin 3886 at /institute-for-quantum-computing IQC Student Summer Conference /institute-for-quantum-computing/events/iqc-student-summer-conference <span class="field field--name-title field--type-string field--label-hidden">IQC Student Summer Conference </span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Thu, 07/03/2025 - 14:25</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="enlarged">On Wednesday, July 23, 2025 the Institute for Quantum Computing (IQC) will host the IQC Student Summer Conference.</p> <p>This is a student-organized event that brings together students at IQC to share their research in a friendly setting. The conference aims to foster connections across different quantum research areas and provide a supportive environment for early-career researchers. All IQC members and guests are welcome to attend.</p> <h2>Organizers</h2> <p>Alec Gow, Devin Blankespoor, Jiayue Yang, Jingwen Zhu, Maria Rosa Preciado Rivas, Parinaz Rafati, Vyom Patel and Ziyuan Yang from the Institute for Quantum Computing (IQC).</p> <h2>Location</h2> <p>The IQC Student Summer Conference will be hosted in the Mike & Ophelia Lazaridis Quantum-Nano Centre (QNC) Room 0101.</p> </div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Schedule</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <table width="500"><thead><tr><th scope="row">Time</th> <th scope="col">Topic</th> <th scope="col">Presenter</th> <th scope="col">Title</th> </tr></thead><tbody><tr><th scope="row">8:45 a.m.</th> <td colspan="3" rowspan="1"> <p class="caption">Check-in - QNC 0101</p> </td> </tr><tr><th scope="row">9:15 a.m.</th> <td colspan="3" rowspan="1"> <p class="caption">Opening remarks</p> </td> </tr><tr><th scope="row">9:30 a.m.</th> <td>Relativistic Quantum Information</td> <td>Ireneo James Membrere</td> <td><a href="#ireneo">An analysis of entanglement harvesting beyond perturbation theory</a></td> </tr><tr><th scope="row">9:45 a.m.</th> <td>Relativistic Quantum Information</td> <td>Boris Ragula</td> <td><a href="#boris">Numerically solving high dimensional correlation functions in QFT</a></td> </tr><tr><th scope="row">10:00 a.m.</th> <td>Relativistic Quantum Information</td> <td>Everett Avison Patterson</td> <td><a href="#everett">Unruh in Spacetime Superposition</a></td> </tr><tr><th scope="row">10:15 a.m.</th> <td>Relativistic Quantum Information</td> <td>María Rosa Preciado Rivas</td> <td><a href="#maria">Simulating a superposition of spacetimes with optical media</a></td> </tr><tr><th scope="row">10:30 a.m.</th> <td colspan="3" rowspan="1"> <p class="caption">Coffee break</p> </td> </tr><tr><th scope="row">11:15 a.m.</th> <td> <p>Experimental Quantum Information</p> </td> <td>Jerome Wiesemann               .</td> <td><a href="#jerome">Evaluation of quantum key distribution systems against injection-locking attacks</a></td> </tr><tr><th scope="row">11:30 a.m.</th> <td> <p>Theoretical Quantum Information</p> </td> <td>Alan Bu</td> <td><a href="#alan">Weight Enumerators: Stabilizer Codes and Beyond</a></td> </tr><tr><th scope="row">11:45 a.m.</th> <td> <p>Theoretical Quantum Information</p> </td> <td>Sanchit Srivastava</td> <td><a href="#sanchit">Logical Bell inequalities, magic states, and lambda polytopes</a></td> </tr><tr><th scope="row">12:00 - 1:30 p.m.</th> <td colspan="3" rowspan="1"> <p class="caption">Lunch - St. Jerome's cafeteria</p> </td> </tr><tr><th scope="row">1:45 p.m.</th> <td>Experimental Quantum Information</td> <td>John Kim    </td> <td><a href="#john">Optimization of Millimeter-Wave Optomechanical Torque Sensors</a></td> </tr><tr><th scope="row">2:00 p.m.</th> <td>  <p>Quantum Information Implementations</p> </td> <td>Aodhan Corrigan        </td> <td><a href="#aodhan">Key Rate Calculations for Dynamically Modulated Single Photon BB84</a></td> </tr><tr><th scope="row">2:15 p.m.</th> <td> <p>Theoretical Quantum Information</p> </td> <td>Matthew Duschenes  </td> <td><a href="#matthew">Simulation of Noisy Quantum Systems with POVM-MPS Tensor Networks</a></td> </tr><tr><th scope="row">2:30 p.m.</th> <td> <p>Theoretical Quantum Information</p> </td> <td>Bohdan Khromets </td> <td><a href="#bohdan">Exact voltage pulse engineering for the collective unitary control of semiconductor quantum dot spin qubit processors</a></td> </tr><tr><th scope="row">3:00 - 5:00 p.m.</th> <td colspan="3" rowspan="1"> <p class="caption">Poster session - QNC 2824 (Second floor kitchen)</p> </td> </tr></tbody></table></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="block block-uw-custom-blocks block-uw-cbl-expand-collapse"> <h2 class="block-title">Abstracts</h2> <div id="68ab91eb77c9f" class="uw-exp-col"> <div class="uw-exp-col__controls"> <button class="uw-exp-col__button uw-exp-col__button--controls" data-type="expand-all">Expand All</button> <button class="uw-exp-col__button uw-exp-col__button--controls" data-type="collapse-all">Collapse All</button> </div> <details class="uw-details"><summary class="details__summary"><h2>Ireneo James Membrere</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/ireneo-james-membrere" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="ireneo" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">An analysis of entanglement harvesting beyond perturbation theory</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>A key prediction of quantum field theory that has yet to be tested experimentally is the existence of correlations between different regions in a quantum field. It is hypothesized that this phenomenon can be measured using the entanglement harvesting protocol, a process by which entanglement between detectors is induced due to their interaction with a quantum field in its vacuum state. Entanglement harvesting has been extensively researched using perturbative methods. However, experimental proposals for realizing this protocol using superconducting qubits utilize setups beyond the limits of perturbation theory. Furthermore, non-perturbative studies are very limited to particular scenarios often unfit for modeling the regimes of current experiments. Here we present results on entanglement harvesting using non-perturbative methods. We investigate the breakdown of perturbation theory as well as the non-perturbative behaviour of harvesting in realistic experimental regimes</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Boris Ragula</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/boris-ragula" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="boris" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Numerically solving high dimensional correlation functions in QFT</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>In this presentation, I show a memory efficient numerical method designed for use in high dimensional, time dependent partial differential equations. In particular, I will show how these methods are adapted for application to the correlation functions of a scalar quantum field, and how they can be used to numerically determine the solution to biscalar functions containing two independent time coordinates.</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Everett Avison Patterson</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/everett-avison-patterson" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="everett" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Unruh in Spacetime Superposition</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>It is widely anticipated that a quantized theory of gravity will admit quantum spacetime configurations that are described by a superposition of semiclassical spacetimes. However, in the absence of such a complete theory of quantum gravity, can we learn anything about how such states might behave? Recent developments led by Foo et al., propose an operational approach to this problem by describing the response of a first-quantized two-level quantum detector coupled to a quantum-controlled superposition of spacetimes.  Using this operational approach, we investigate what happens to an accelerated detector in such a superposition of spacetimes. We find that previously observed resonance peaks in the response function (occurring at rational values of the quantized spacetime parameter) are accentuated by the acceleration. Moreover, we provide the first explicit analysis of detector thermalization in superposed spacetimes. If time permits, I will comment on how this extension of the Unruh effect relates to previous work that found non-thermal responses for detectors travelling along superpositions of accelerated trajectories in a fixed spacetime.</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>María Rosa Preciado Rivas </h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/maria-rosa-preciado-rivas" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="maria" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Simulating a superposition of spacetimes with optical media</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>Superpositions of spacetimes have received considerable attention from the Relativistic Quantum Information community. The standard RQI protocol involves calculating the response of an Unruh-DeWitt detector that is coupled to a quantum field whose background spacetime exists in a quantum superposition of geometries. In this work, we propose a method to simulate such a superposition of spacetimes using optical media. The approach builds on the established analogy between the electromagnetic field in an arbitrary spacetime and the electromagnetic field in an equivalent optical medium. Since permittivity determines the speed of light propagation in an optical medium, controlling it allows us to mimic different spacetime geometries. By analyzing an optical cavity under quantum control—where its permittivity depends on the state of a quantum system—we analyze in-principle measurable quantities in a scenario describing a superposition of effective metrics. We draw analogies between our setup and the standard RQI protocol, and outline how such an approach could be used to simulate quantum superpositions of spacetimes in a laboratory setting.</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Jerome Wiesemann</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/jerome-wiesemann" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="jerome" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Evaluation of quantum key distribution systems against injection-locking attacks</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>While ideal quantum key distribution (QKD) systems are well-understood, practical implementations face various vulnerabilities, such as side-channel attacks resulting from device imperfections. To address these issues, one usually adjusts the security proof to incorporate the device imperfections or modifies the experimental implementation to patch the loophole. However, in the process of certifying QKD systems, evaluators must be able to verify that the manufacturer's claims are valid. For example, current security proofs for decoy-state BB84 protocols either assume uniform phase randomization of Alice’s signals, which can be compromised by practical limitations and attacks like injection locking, or rely on a (partially) characterized phase distribution. In this talk, I will present an experimental method to evaluate QKD systems against injection-locking attacks using a heterodyne detection setup, exemplifying the evaluation process. The methods presented are source-agnostic and can be used to evaluate general QKD systems against injection-locking attacks.</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Alan Bu</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/alan-bu" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="alan" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Weight Enumerators: Stabilizer Codes and Beyond</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>First introduced by Jessie MacWilliams in her 1962 dissertation, weight enumerators are combinatorial objects that count the Hamming weight of codewords in classical error-correcting codes (and of stabilizers in quantum stabilizer codes). In 1998, Eric Rains used the weight enumerator framework to demonstrate that the distance of any quantum error-correcting code is at most 2⌊n/6⌋ + 2, building upon a series of works on classical weight enumerators by Sloane, Mallows, and Conway. Rains’ bound remains one of the best general distance bounds for quantum codes. Weight enumerators have found applications in quantum channel capacity, magic state distillation, and entanglement distillation. In this talk, we explore the intimate connections between weight enumerators, code distance, depolarizing channels, and quantum channel capacity.</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Sanchit Srivastava</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/sanchit-srivastava" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="sanchit" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Logical Bell inequalities, magic states, and lambda polytopes</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>In this talk, we report on work in progress on the problem of unifying the graph-theoretic and logical view points of contextuality and the connections of these approaches to Lambda polytopes. Much of the motivation of this work stems from the fact that although all these approaches have been used with substantial success, the setting in which they are best applied differ vastly. Our starting point is the celebrated result by Howard et al. which established a connection between contextuality and magic state distillation. We provide an alternative proof of this result entirely using logical Bell inequalities. More precisely, we give a complete description of stabilizer measurements on 2-qudits and derive logical Bell inequalities which identify the faces of the simulable polytope of a single qudit. This approach is a step towards understanding a concrete connection between the logical and graph-theoretic points of view of contextuality and offers a way to relate them to Lambda polytopes.</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>John Kim</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/john-kim" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="john" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Optimization of Millimeter-Wave Optomechanical Torque Sensors</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>Coupling the small size and high-quality of nanomechanical resonators with low-loss electromagnetic cavities for efficient readout, cavity optomechanical systems have been used to realize exquisite sensors of quantities such as mass, force, and torque. However, owing to their low resonant frequencies, mechanical sensors are often limited by thermal noise. Therefore, reducing this noise and enhancing the coupling strength of a cavity optomechanical sensor is essential for improving its sensitivity. Recent efforts to cool infrared cavity optomechanical torque sensors have been limited by the thermal heating associated with these high energy measurement photons. Here we propose a method to circumvent these detrimental heating effects using a superconducting optomechanical torque sensor operating at mm-wave frequencies. To enhance the sensitivity of these devices, we adjust the geometry of the device to optimize its mechanical resonant frequency and moment of inertia. We perform simulations of various sensor geometries to assess their impact on the device’s torque sensitivity and coupling strength. From the simulation results, we identify the optimal configuration that simultaneously minimizes added noise and maximizes coupling strength. Future cavity-optomechanical torque sensors will be fabricated based off of these designs and measured in cryogenic settings, with the ultimate goal of reaching the standard quantum limit of optomechanical torque sensing.</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Aodhan Corrigan</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/aodhan-corrigan" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="aodhan" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Key Rate Calculations for Dynamically Modulated Single Photon BB84</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>We demonstrate a full implementation of the BB84 Quantum Key Distribution (QKD) protocol using a high performance Purcell-enhanced semiconductor quantum dot source capable of deterministic single photon emission. We dynamically selected Alice's states used in the protocol using a custom built electro-optic modulator, driven by a random sequence from a quantum random number generator. This is achieved at an 80 MHz repetition rate, and we observe a mean photon number of 0.0013 with an anti-bunching value of 0.03. Through our setup, we achieve a low QBER of 2.9%. In order to demonstrate the performance of our protocol, we show viable key rates against both IID and coherent attacks by an eavesdropper using both state of the art numerical and analytic security proof techniques, while being able to consider device imperfections on both the source and detector sides. The viability of these results demonstrates the potential of deterministic photon sources for QKD, and bridges high-performance photonic hardware with rigorous security analyses.</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Matthew Duschenes</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/matthew-duschenes" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="matthew" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Simulation of Noisy Quantum Systems with POVM-MPS Tensor Networks</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>Quantum systems, particularly those undergoing non-unitary dynamics, are difficult to simulate classically, and require careful consideration of the most appropriate representations of the involved quantum states and operators. When simulating noisy quantum circuits, or general quantum channels, considered approaches, including direct density matrix simulations, tensor-networks, and truncated operator expansions, have advantages and disadvantages at capturing various classical and quantum correlations that arise due to evolution times and noise scales. Here, we propose a novel simulation technique, where general quantum mixed states are represented in terms of their associated distributions of local, informationally-complete positive-valued-measurement outcomes (POVM), and such distributions are represented efficiently using Matrix Product States (POVM-MPS). Given the POVM-MPS now represent probability densities of measurements and not probability amplitudes of states, upon application of quantum channels, its bond dimensions are truncated using a combination of canonical singular value and novel non-negative matrix factorization methods, allowing efficient approximate evolution of such systems. To demonstrate these methods, we simulate several noisy quantum circuits, and characterize various fidelity and entanglement measures as a function of circuit depth and noise scale. Such studies highlight advantages and disadvantages of the proposed methods, and demonstrate that there exists underlying, persistent difficulties of non-unitary simulation that any numerical method will encounter.</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Bohdan Khromets</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/bohdan-khromets" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="bohdan" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Exact voltage pulse engineering for the collective unitary control of semiconductor quantum dot spin qubit processors</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>We present a method of voltage pulse design for the optimal control of spin qubits in a linear array of quantum dots. Voltage pulses are reverse-engineered from the voltage-dependent spin Hamiltonian parameters: g-factor deviations δgi(V, W) and exchange couplings Ji(V, W), when their pulse shapes S(t) are constrained to ensure time-ordered evolution. We show that a single numerical integration of a system of ODEs of type d[V, W]/dS = F(V, W) enables one to reconstruct voltage pulses Vi(S(t)), Wi(S(t)) for any shape function chosen for the spin Hamiltonian controls. The procedure yields pulses for single-qubit rotations in the global ESR field, SWAPk/2, or Control-Phase gates, with theoretically perfect unitary fidelities. We also present a strategy to systematically reduce the number of necessary voltage controls such as using a frequency-modulated rotating frame. These approaches open a pathway to simplifying experimental devices without compromising their controllability. Remarkably, the complexity of our method scales polynomially with the number of physical controls, which enables one to utilize it efficiently for the universal unitary control of large qubit arrays.</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details></div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Code of conduct</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>The open exchange of ideas and the freedom of thought and expression are central to the aims and goals of the IQC Graduate Student Conference; these require an environment that recognizes the inherent worth of every individual, that fosters dignity, understanding and mutual respect and that embraces diversity. The organizing committee is committed to fostering this environment; harassment and discrimination of any kind will not be tolerated.<br /><br /> All conference attendees, speakers and their guests at the IQC Graduate Student Conference are required to abide by the <a href="/secretariat/policies-procedures-guidelines/policy-33">University of À¶Ý®ÊÓÆµâ€™s Policy 33 (Ethical Behaviour)</a>. </p> </div> </div> </div> </div> </section> Thu, 03 Jul 2025 18:25:32 +0000 Takudzwa Chipo Valerie Mudzongo 3842 at /institute-for-quantum-computing IQC Student seminar featuring Adam Teixido-Bonfill /institute-for-quantum-computing/events/iqc-student-seminar-featuring-adam-teixido-bonfill <span class="field field--name-title field--type-string field--label-hidden">IQC Student seminar featuring Adam Teixido-Bonfill</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Wed, 06/11/2025 - 09:18</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none uw-section-alignment--top-align-content layout layout--uw-2-col larger-right"><div class="layout__region layout__region--first"> <div class="block block-layout-builder block-inline-blockuw-cbl-banner-images"> <article id="banner1-f47b5dd9-2ed2-452e-ab1e-b8bcb3a29547" class="card card__banner "><div class="card__body"> <div class="card__banner--image uw-text-overlay--none"> <!--If banner text overlay is split then always show the H1 in the top white bar. --> <div class="card__banner--media"> <picture class="uw-picture"><!--[if IE 9]><video style="display: none;"><![endif]--><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_x_large/public/uploads/images/untitled-2-2.png?itok=X5vj9l4J 1x" media="all and (min-width: 63.19em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_large/public/uploads/images/untitled-2-2.png?itok=oZtgAYHw 1x" media="all and (min-width: 49.81em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_medium/public/uploads/images/untitled-2-2.png?itok=1vvVumud 1x" media="all and (min-width: 30em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_small/public/uploads/images/untitled-2-2.png?itok=SbyXGMuJ 1x" media="all and (min-width: 25em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_x_small/public/uploads/images/untitled-2-2.png?itok=_0PWodRp 1x" media="all and (min-width: 15em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_portrait/public/uploads/images/untitled-2-2.png?itok=k9GeLqf9 1x" media="all and (min-width: 1em)" type="image/png"></source><!--[if IE 9]></video><![endif]--><img class="uw-picture__fallback" src="/institute-for-quantum-computing/sites/default/files/styles/large/public/uploads/images/untitled-2-2.png?itok=GmFMAfID" alt="" /></picture></div> <div class="card__banner--caption uw_para_image_banner"> <div class="card__banner--text-align"> </div> </div> </div> </div> </article></div> </div> <div class="layout__region layout__region--second"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Towards experimental entanglement harvesting in superconducting circuits</h2> <p>Adam Teixido-Bonfill</p> <p>Entanglement harvesting is the surprising prediction that two quantum systems can become entangled by locally interacting with a quantum field, even if the two systems are far apart and never directly interact. Moreover, this can occur even if the field is in its vacuum state. In relativistic quantum information, entanglement harvesting is typically modeled using Unruh-DeWitt (UDW) particle detectors.</p> <p>In this talk, we show how to extend the standard UDW detector model to better match a proposed realization of entanglement harvesting in superconducting circuits. The experiment consists of a pair of tunable superconducting qubits that interact with one-dimensional quantum fields (transmission lines). We investigate how these experimental features impact entanglement harvesting, paving the way to implement this protocol in the lab.</p> <h3>Location</h3> <p>QNC 1201</p> </div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section> Wed, 11 Jun 2025 13:18:43 +0000 Takudzwa Chipo Valerie Mudzongo 3816 at /institute-for-quantum-computing IQC Special seminar featuring Joanna Krynski /institute-for-quantum-computing/events/iqc-special-seminar-featuring-joanna-krynski <span class="field field--name-title field--type-string field--label-hidden">IQC Special seminar featuring Joanna Krynski</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Wed, 04/02/2025 - 12:15</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none uw-section-alignment--top-align-content layout layout--uw-2-col larger-right"><div class="layout__region layout__region--first"> <div class="block block-layout-builder block-inline-blockuw-cbl-banner-images"> <article id="banner1-d9e5377f-2c2c-4b0a-be05-eec4dd515d1b" class="card card__banner "><div class="card__body"> <div class="card__banner--image uw-text-overlay--none"> <!--If banner text overlay is split then always show the H1 in the top white bar. --> <div class="card__banner--media"> <picture class="uw-picture"><!--[if IE 9]><video style="display: none;"><![endif]--><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_x_large/public/uploads/images/untitled-2-2.png?itok=X5vj9l4J 1x" media="all and (min-width: 63.19em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_large/public/uploads/images/untitled-2-2.png?itok=oZtgAYHw 1x" media="all and (min-width: 49.81em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_medium/public/uploads/images/untitled-2-2.png?itok=1vvVumud 1x" media="all and (min-width: 30em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_small/public/uploads/images/untitled-2-2.png?itok=SbyXGMuJ 1x" media="all and (min-width: 25em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_x_small/public/uploads/images/untitled-2-2.png?itok=_0PWodRp 1x" media="all and (min-width: 15em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_portrait/public/uploads/images/untitled-2-2.png?itok=k9GeLqf9 1x" media="all and (min-width: 1em)" type="image/png"></source><!--[if IE 9]></video><![endif]--><img class="uw-picture__fallback" src="/institute-for-quantum-computing/sites/default/files/styles/large/public/uploads/images/untitled-2-2.png?itok=GmFMAfID" alt="" /></picture></div> <div class="card__banner--caption uw_para_image_banner"> <div class="card__banner--text-align"> </div> </div> </div> </div> </article></div> </div> <div class="layout__region layout__region--second"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Quanta Image Sensor for Space Applications  </h2> <p><a href="https://scholar.google.com/citations?user=JVMDvcAAAAAJ&hl=en">Joanna Krynski</a> | Centre National d'Études Spatiales</p> <p>Photon counting has been identified as an area of interest in a multitude of sectors, including in defense and space applications. The quanta image sensor (QIS) is a promising emerging technology for ultra-low light imaging due to its extremely low dark current and deep sub-electron read noise. In space applications, radiation damage is a primary concern; it is not yet known how the photoelectron counting capability fairs in such a harsh environment.</p> <p>The talk will introduce the QIS technology and its use-cases as compared with legacy photon-counting technologies such as single-photon avalanche diodes and electron-multiplying CCDs.</p> <p>I will also present our results from radiation testing of a commercially available QIS camera, with particular emphasis on the sensor’s photon counting sensitivity.   </p> <h3>Location</h3> <ul><li> <p>QNC 1201</p> </li> </ul></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section> Wed, 02 Apr 2025 16:15:13 +0000 Takudzwa Chipo Valerie Mudzongo 3762 at /institute-for-quantum-computing PhD thesis defence - José Polo Gómez /institute-for-quantum-computing/events/phd-thesis-defence-jose-polo-gomez <span class="field field--name-title field--type-string field--label-hidden">PhD thesis defence - José Polo Gómez</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Thu, 03/20/2025 - 09:29</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Measurements of quantum fields with particle detectors</h2> <p><strong>Candidate: </strong><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="d8d1a9d2-6ba5-4c78-983f-fd39fc2597b0" href="/institute-for-quantum-computing/contacts/jose-polo-gomez">José Polo Gómez</a></p> <p><strong>Supervisor:</strong> <a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="0680e213-b64e-4712-b138-8bc2f2be816a" href="/institute-for-quantum-computing/contacts/eduardo-martin-martinez">Eduardo Martin-Martinez</a></p> <p><strong>Location: </strong>QNC 2101, online</p> </div> </div> </div> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h3 class="block-title">Abstract</h3> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>This thesis aims to provide a working measurement theory for quantum fields built upon measurements using localized non-relativistic quantum systems, widely known as particle detectors.</p> <p>In the first half of the thesis, we focus on using detector-based schemes to carefully formulate a measurement theory that is compatible with relativity. To do so, we provide a rigorous analysis of the causal behaviour of the induced non-selective channels, as well as an update rule that is consistent with relativistic causality. In the process, we establish a body of results, including a characterization of localized causal channels in real scalar QFT, and the formulation of a formalism that allows a consistent treatment of non-relativistic multipartite systems in relativistic setups.</p> <p>In the second half of the thesis, we focus on verifying that the measurement theory formulated in the first part is a working measurement theory, meaning that it can actually be used in practice to measure specific targeted features of the quantum field. To ensure this, we introduce a measurement strategy where particle detectors always undergo the same measurement protocol---regardless of the quantity or feature of interest---and then are subjected to a tomography process. The resulting data is fed into a trained neural network that is capable of inferring the targeted quantity or feature from the detector's readings. This strategy has the potential to be applicable to measure any quantity of the field that is accessible through local measurements.</p> <p>More tangentially, we also introduce a method beyond perturbation theory that uses trains of delta couplings to efficiently approximate the final state of a detector undergoing a continuous interaction. Additionally, we apply the detector-based measurement theory to analyze the effect of measurements on the protocol of entanglement harvesting.</p> </div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section> Thu, 20 Mar 2025 13:29:14 +0000 Takudzwa Chipo Valerie Mudzongo 3755 at /institute-for-quantum-computing World Quantum Day – Quantum Shorts: Encore /institute-for-quantum-computing/events/world-quantum-day-quantum-shorts-encore <span class="field field--name-title field--type-string field--label-hidden">World Quantum Day – Quantum Shorts: Encore </span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Thu, 03/20/2025 - 08:42</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none uw-section-alignment--top-align-content layout layout--uw-2-col larger-left"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="enlarged">Celebrate World Quantum Day with an IQC film experience!</p> <p>As part of the <a href="https://quantum2025.org/about/">International Year of Quantum</a>, join us for a special screening of the <a href="https://shorts.quantumlah.org/news/quantum-shorts-encore/">Quantum Shorts Film Festival</a> winners!</p> <p>These short films bring quantum to life through imaginative storytelling—both narrative and abstract. As part of the screening <strong>curated panel of experts</strong> will provide additional insights and local context, connection quantum to the À¶Ý®ÊÓÆµ story in an engaging discussion.</p> <p>Join us after for light refreshments and networking, where you can connect with fellow quantum enthusiasts.</p> <h2>Meet the panel</h2> <ul><li><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="45ebd68a-bb2b-4171-ad00-9c2eaad57bc3" href="/institute-for-quantum-computing/profiles/christine-muschik">Christine Muschik</a> | Panelist - faculty member, IQC</li> <li><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="c7a89264-36df-49e8-aaf0-4147b044f715" href="/institute-for-quantum-computing/contacts/kayleigh-platz">Kayleigh Platz</a> | Moderator - director of communications and strategic initiatives, IQC</li> <li><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="c4b5b037-f32a-4376-945d-6c4aa3e7ef7e" href="/institute-for-quantum-computing/contacts/fiona-thompson">Fiona Thompson</a> | Panelist - science outreach officer, IQC</li> </ul><p class="caption">Stay tuned as we’ll be adding more industry and academic speakers to this exciting discussion.</p> </div> </div> </div> </div> <div class="layout__region layout__region--second"> <div class="block block-uw-custom-blocks block-uw-cbl-image"> <div class="uw-image"> <figure class="uw-image__figure uw-image__sized-image uw-image__sized-image--center uw-image__sized-image--original"><img src="/institute-for-quantum-computing/sites/default/files/uploads/images/qs2025_news-01-scaled.jpg" width="" height="" alt="A projector casting a scientific model" /></figure></div> </div> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Location</h2> <p>Apollo Cinema<br /> 141 Ontario St N<br /> Kitchener, ON, CA  N2H 4Y5</p> </div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none uw-section-alignment--top-align-content layout layout--uw-2-col even-split"><div> </div> <div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="block block-webform block-webform-block"> <h2 class="block-title">Register</h2> <form class="webform-submission-form webform-submission-add-form webform-submission-world-quantum-day-quantum-shorts-form webform-submission-world-quantum-day-quantum-shorts-add-form" data-drupal-selector="webform-submission-world-quantum-day-quantum-shorts-add-form" action="/institute-for-quantum-computing/events/tags/quantum-sensing/feed" method="post" id="webform-submission-world-quantum-day-quantum-shorts-add-form" accept-charset="UTF-8"> <div data-drupal-selector="edit-0" class="webform-message js-webform-message js-form-wrapper form-wrapper" id="edit-0"><div data-drupal-messages=""> <div role="contentinfo" aria-label="Status message" class="messages messages--status"> <h2 class="visually-hidden">Status message</h2> Sorry...This form is closed to new submissions. </div> </div> </div> <input autocomplete="off" data-drupal-selector="form-ypjc8okwk-h2vwn-yxujgajmvap6up8ovpmz-cs0jae" type="hidden" name="form_build_id" value="form-ypjC8Okwk_H2vwN-yxuJGaJMVap6UP8Ovpmz-cS0JAE" /><input data-drupal-selector="edit-webform-submission-world-quantum-day-quantum-shorts-add-form" type="hidden" name="form_id" value="webform_submission_world_quantum_day_quantum_shorts_add_form" /><div class="url-textfield js-form-wrapper form-wrapper" style="display: none !important;"><div class="js-form-item form-item js-form-type-textfield form-item-url js-form-item-url"> <label for="edit-url">Leave this field blank</label> <input autocomplete="off" data-drupal-selector="edit-url" data-msg-maxlength="Leave this field blank field has a maximum length of 128." type="text" id="edit-url" name="url" value="" size="20" maxlength="128" class="form-text" /></div> </div> </form> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section> Thu, 20 Mar 2025 12:42:00 +0000 Takudzwa Chipo Valerie Mudzongo 3754 at /institute-for-quantum-computing IQC Colloquium featuring Pieter Kok /institute-for-quantum-computing/events/iqc-colloquium-featuring-pieter-kok <span class="field field--name-title field--type-string field--label-hidden">IQC Colloquium featuring Pieter Kok</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Thu, 03/06/2025 - 13:32</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none uw-section-alignment--top-align-content layout layout--uw-2-col larger-right"><div class="layout__region layout__region--first"> <div class="block block-layout-builder block-inline-blockuw-cbl-banner-images"> <article id="banner1-d9e5377f-2c2c-4b0a-be05-eec4dd515d1b" class="card card__banner "><div class="card__body"> <div class="card__banner--image uw-text-overlay--none"> <!--If banner text overlay is split then always show the H1 in the top white bar. --> <div class="card__banner--media"> <picture class="uw-picture"><!--[if IE 9]><video style="display: none;"><![endif]--><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_x_large/public/uploads/images/headhsots-2-2.png?itok=JQVJutyQ 1x" media="all and (min-width: 63.19em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_large/public/uploads/images/headhsots-2-2.png?itok=ozt4y5n2 1x" media="all and (min-width: 49.81em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_medium/public/uploads/images/headhsots-2-2.png?itok=IFndfuGT 1x" media="all and (min-width: 30em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_small/public/uploads/images/headhsots-2-2.png?itok=2IJR9iQ7 1x" media="all and (min-width: 25em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_x_small/public/uploads/images/headhsots-2-2.png?itok=sJe5GPS5 1x" media="all and (min-width: 15em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_portrait/public/uploads/images/headhsots-2-2.png?itok=mG-KSidw 1x" media="all and (min-width: 1em)" type="image/png"></source><!--[if IE 9]></video><![endif]--><img class="uw-picture__fallback" src="/institute-for-quantum-computing/sites/default/files/styles/large/public/uploads/images/headhsots-2-2.png?itok=Pt7RcCx_" alt="Pieter Kok" /></picture></div> <div class="card__banner--caption uw_para_image_banner"> <div class="card__banner--text-align"> </div> </div> </div> </div> </article></div> </div> <div class="layout__region layout__region--second"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Quantum telescopes and quantum imaging</h2> <p><a href="https://sites.google.com/sheffield.ac.uk/pieter-kok/home">Pieter Kok</a> | University of Sheffield - <a href="https://quantum.shef.ac.uk/" rel="noopener noreferrer">The Sheffield Quantum Centre</a></p> <p>Quantum mechanics has revolutionised information processes like computing and communication. However, full-scale quantum networks and quantum computing are still years away. In the short term we can expect benefits from quantum technologies in the areas of sensing and metrology. In this talk I will explore how we can use quantum entanglement to improve telescopes.</p> <p>I will consider mainly (distant) classical light sources that we are trying to characterise, rather than using highly engineered quantum light to probe systems of interest. I will give a brief overview of some relevant experiments that have shown an improvement in resolution and/or noise by adopting quantum technologies, and explore some of the open questions in the field.</p> <h3>Location</h3> <p>QNC 0101</p> </div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section> Thu, 06 Mar 2025 18:32:00 +0000 Takudzwa Chipo Valerie Mudzongo 3735 at /institute-for-quantum-computing Faculty of Science presents: Science in the City - Quantum /institute-for-quantum-computing/events/science-in-the-city-quantum <span class="field field--name-title field--type-string field--label-hidden">Faculty of Science presents: Science in the City - Quantum</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Thu, 02/13/2025 - 11:07</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none uw-section-alignment--top-align-content layout layout--uw-2-col larger-left"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>The <a href="https://quantum2025.org/about/">2025 International Year of Quantum</a> recognizes 100 years since the development of quantum mechanics. Researchers at the University of À¶Ý®ÊÓÆµ are at the forefront of quantum innovation, pushing the boundaries of discovery and positioning À¶Ý®ÊÓÆµ as a global leader in quantum research. Join us to celebrate the Year of Quantum by engaging with leading experts who share what’s next in quantum science!  </p> <p>The event is free. Light snacks and beverages will be available for purchase.</p> </div> </div> </div> </div> <div class="layout__region layout__region--second"> <div class="block block-uw-custom-blocks block-uw-cbl-image"> <div class="uw-image"> <figure class="uw-image__figure uw-image__sized-image uw-image__sized-image--center uw-image__sized-image--original"><img src="/institute-for-quantum-computing/sites/default/files/uploads/images/webpage-banners-5-4.png" width="" height="" alt="Science in the city" /></figure></div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="block block-layout-builder block-inline-blockuw-cbl-call-to-action"> <div class="uw-cta "> <div class="uw-cta__center-wrapper"> <aside class="uw-cta__aside org-sci"><a href="/science/events/science-city-quantum" class="uw-cta__link"> <div class="uw-cta__wrapper"> <div class="call-to-action-theme-org-sci"> <div class="uw-cta__text uw-cta__text--small">JOIN US FOR THE EVENT</div> <div class="uw-cta__text uw-cta__text--big">Register today</div> </div> </div> </a> </aside></div> </div> </div> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Meet the speakers</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <ul><li> <p class="enlarged"><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="7e780b86-f2ab-4185-bd2d-1c792e23ec5f" href="/institute-for-quantum-computing/research/groups/coherent-spintronics-group" rel="noopener noreferrer"><strong>Jonathan Baugh</strong></a>(Chemistry)</p> </li> <li> <p class="enlarged"><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="6cd671fc-f8e6-4575-9394-1616bf18900c" href="/institute-for-quantum-computing/research/groups/laboratory-quantum-information-trapped-ions" rel="noopener noreferrer"><strong>Kazi Rajibul Islam</strong></a>(Physics & Astronomy)</p> </li> <li> <p class="enlarged"><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="a1436ab5-342d-4f12-9694-a079ff352261" href="/institute-for-quantum-computing/research/groups/quantum-materials-and-devices-lab" rel="noopener noreferrer"><strong>Adam Wei Tsen</strong></a>(Chemistry)</p> </li> </ul></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section> Thu, 13 Feb 2025 16:07:59 +0000 Takudzwa Chipo Valerie Mudzongo 3721 at /institute-for-quantum-computing À¶Ý®ÊÓÆµ RQI seminar featuring Germain Tobar /institute-for-quantum-computing/events/waterloo-rqi-seminar-featuring-germain-tobar <span class="field field--name-title field--type-string field--label-hidden">À¶Ý®ÊÓÆµ RQI seminar featuring Germain Tobar</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Wed, 01/15/2025 - 15:29</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Detecting single gravitons with quantum-controlled mechanical resonators</h2> <p>by Germain Tobar | Stockholm University</p> <p>The quantization of gravity is widely believed to result in gravitons - particles of discrete energy that form gravitational waves. But their detection has so far been considered impossible. Here we show that signatures of single gravitons can be observed in laboratory experiments. We show that stimulated and spontaneous single graviton processes can become relevant for massive quantum acoustic resonators and that stimulated absorption can be resolved through optomechanical read-out of single phonons of a multi-mode bar resonator. We analyse the feasibility of observing a signal from the inspiral, merger and post-merger phase of a compact binary inspiral.</p> <p>Our results show that single graviton signatures are within reach of experiments. In analogy to the discovery of the photoelectric effect for photons, such signatures can provide the first experimental evidence of the quantization of gravity.</p> <p>[1] G. Tobar, S. K. Manikandan, T. Beitel, and I. Pikovski, Nature Communications, 15 7229 (2024)</p> <p>[2] G. Tobar, Igor Pikovski, Michael E. Tobar, arXiv:2406.16898 (2024)</p> <h3>Location</h3> <ul><li>QNC 1201</li> <li><a href="https://uwaterloo.zoom.us/j/95161764824?pwd=5cvVcQHGmYeZL5S3RzjFhdI0a7LYrx.1">Zoom</a> <ul><li> <p>Meeting ID: 951 6176 4824</p> </li> <li> <p>Passcode: 744855</p> </li> </ul></li> </ul></div> </div> </div> </div> </section> Wed, 15 Jan 2025 20:29:27 +0000 Takudzwa Chipo Valerie Mudzongo 3677 at /institute-for-quantum-computing IQC Colloquium featuring Murray Holland /institute-for-quantum-computing/events/iqc-colloquium-featuring-murray-holland <span class="field field--name-title field--type-string field--label-hidden">IQC Colloquium featuring Murray Holland</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Tue, 10/22/2024 - 17:22</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none uw-section-alignment--top-align-content layout layout--uw-2-col larger-right"><div class="layout__region layout__region--first"> <div class="block block-layout-builder block-inline-blockuw-cbl-banner-images"> <article id="banner1-d9e5377f-2c2c-4b0a-be05-eec4dd515d1b" class="card card__banner "><div class="card__body"> <div class="card__banner--image uw-text-overlay--none"> <!--If banner text overlay is split then always show the H1 in the top white bar. --> <div class="card__banner--media"> <picture class="uw-picture"><!--[if IE 9]><video style="display: none;"><![endif]--><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_x_large/public/uploads/images/headhsots-6-1.png?itok=WBlU38mQ 1x" media="all and (min-width: 63.19em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_large/public/uploads/images/headhsots-6-1.png?itok=Q6tPFuOf 1x" media="all and (min-width: 49.81em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_medium/public/uploads/images/headhsots-6-1.png?itok=btc-JFpt 1x" media="all and (min-width: 30em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_small/public/uploads/images/headhsots-6-1.png?itok=uq2SnGYz 1x" media="all and (min-width: 25em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_x_small/public/uploads/images/headhsots-6-1.png?itok=ArWVRGb9 1x" media="all and (min-width: 15em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_portrait/public/uploads/images/headhsots-6-1.png?itok=RZgYoOPB 1x" media="all and (min-width: 1em)" type="image/png"></source><!--[if IE 9]></video><![endif]--><img class="uw-picture__fallback" src="/institute-for-quantum-computing/sites/default/files/styles/large/public/uploads/images/headhsots-6-1.png?itok=pzDwGoMo" alt="Murray Holland" /></picture></div> <div class="card__banner--caption uw_para_image_banner"> <div class="card__banner--text-align"> </div> </div> </div> </div> </article></div> </div> <div class="layout__region layout__region--second"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Programmable Atom Interferometry in a Multidimensional Optical Lattice</h2> <p>by <a href="https://www.colorado.edu/physics/murray-holland">Murray Holland</a> | University of Colorado Boulder</p> <p>The creation of a matter-wave interferometer can be achieved by loading Bose-Einstein condensed atoms into a crystal of light formed by interfering laser beams. By translating this optical lattice in a specific way, the traditional steps of interferometry can all be implemented, i.e., splitting, propagating, reflecting, and recombining the quantum wavefunction. Using this concept, we have designed and built a compact device to sense inertial signals, including accelerations, rotations, gravity, and gravity gradients.</p> <p>This approach is interesting, since the atoms can be supported against external forces and perturbations, and the system can be completely programmed on-the-fly for a new design goal. I will report on experimental results in which atoms are cooled into a dipole trap and subsequently loaded into an optical lattice. Protocols for obtaining interferometry steps are derived via machine learning and quantum optimal control methods.</p> <p>Implementing these in the lab, I will show our recent demonstrations of a vector accelerometer capable of sensitively deducing the magnitude and direction of an inertial force in a single shot. I will discuss our vision to use this platform for remote sensing of Earth as part of the recently founded NASA Quantum Pathways Institute.</p> <h3>Location</h3> <ul><li> <p>QNC 0101</p> </li> </ul></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section> Tue, 22 Oct 2024 21:22:56 +0000 Takudzwa Chipo Valerie Mudzongo 3497 at /institute-for-quantum-computing