BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20240310T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20231105T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:68cd9b8c37f0a DTSTART;TZID=America/Toronto:20240416T150000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240416T160000 URL:/institute-for-quantum-computing/events/recent-prog ress-hamiltonian-learning SUMMARY:Recent progress in Hamiltonian learning CLASS:PUBLIC DESCRIPTION:Summary \n\nCS/MATH SEMINAR - YU TONG\, CALTECH\n\nQuantum-Nano Centre\, 200 University Ave West\, Room QNC 1201 + ZOOM\nÀ¶Ý®ÊÓÆµ\, ON CA N2L 3G1\n\nIn the last few years a number of works have proposed and impr oved\nprovably efficient algorithms for learning the Hamiltonian from\nrea l-time dynamics. In this talk\, I will first provide an overview of\nthese developments\, and then discuss how the Heisenberg limit\, the\nfundament al precision limit imposed by quantum mechanics\, can be\nreached for this task. I will demonstrate how the Heisenberg limit\nrequires techniques th at are fundamentally different from previous\nones\, and the important rol es played by quantum control and\nthermalization. I will also discuss open problems that are crucial to\nmaking these algorithms implementable on cu rrent devices.\n DTSTAMP:20250919T180604Z END:VEVENT END:VCALENDAR