BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20220313T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20221106T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:6829b8cea1ab2 DTSTART;TZID=America/Toronto:20230126T150000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20230126T160000 URL:/institute-for-quantum-computing/events/quantum-maj ority-vote SUMMARY:Quantum majority vote CLASS:PUBLIC DESCRIPTION:Summary \n\nMATH CS SEMINAR FEATURING MARIS OZOLS\, ASSISTANT P ROFESSOR UNIVERSITY\nOF AMSTERDAM QUSOFT\n\nMajority vote is a basic metho d for amplifying correct outcomes that\nis widely used in computer science and beyond. While it can amplify\nthe correctness of a quantum device wit h classical output\, the\nanalogous procedure for quantum output is not kn own. We introduce\nquantum majority vote as the following task: given a pr oduct state\n∣ψ_1⟩⊗⋯⊗∣ψ_n⟩ where each qubit ∣ψ_i⟩ is in one of\ntwo orthogonal states ∣ψ⟩ or ∣ψ^⊥⟩\, output the maj ority\nstate. We show that an optimal algorithm for this problem achieves\ nworst-case fidelity of 1/2 + Θ(1/n). Under the promise that at least\n2/ 3 of the input qubits are in the majority state\, the fidelity\nincreases to 1 − Θ(1/n) and approaches 1 as n increases. ...\n DTSTAMP:20250518T103910Z END:VEVENT END:VCALENDAR