Conference /institute-for-quantum-computing/ en Year of Quantum Across Canada Conference /institute-for-quantum-computing/events/yqac-conference <span class="field field--name-title field--type-string field--label-hidden">Year of Quantum Across Canada Conference</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/e2martin" typeof="schema:Person" property="schema:name" datatype="" xml:lang="">Emily Martin</span></span> <span class="field field--name-created field--type-created field--label-hidden">Wed, 08/13/2025 - 15:39</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="enlarged">The Institute for Quantum Computing (IQC) and the Perimeter Institute for Theoretical Physics will jointly host a conference celebrating the 100 year anniversary of the discovery of quantum mechanics.</p> <p class="enlarged">The conference will celebrate and aim to strengthen the quantum information science community in Canada and beyond, by bringing together leading Canadian researchers as well as members of the broader quantum community. The program will highlight the fundamental advances being made in quantum information theory and how these advances lead to applications.</p> <p class="enlarged">We will also be hosting a poster session on Tuesday, October 7 at IQC. Poster submissions are welcome and will be reviewed by the program committee. Some posters may be selected to present as a contributed talk.</p> </div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none uw-section-alignment--top-align-content layout layout--uw-2-col even-split"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Conference topics</h2> <ul><li>Quantum metrology</li> <li>Quantum simulation and quantum advantage</li> <li>Quantum error-correction and fault tolerance</li> <li>Quantum complexity and algorithms</li> <li>Quantum communication and networks</li> <li>Quantum cryptography</li> <li>Quantum information in quantum matter and quantum gravity </li> </ul><p><mark>Participation is open to all scientists who are interested in the conference topics. </mark></p> </div> </div> </div> </div> <div class="layout__region layout__region--second"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Date</h2> <p>October 6 to 9, 2025</p> <h2>Location</h2> <p>Perimeter Institute for Theoretical Physics, PI/1-100 - Theatre</p> <p>31 Caroline Street North, ݮƵ, Ontario, Canada, N2L 2Y5</p> <h2>Registration deadlines</h2> <ul><li>In-Person registration closes: <strong>September 22</strong> at 23:59 ET</li> <li>Virtual registration closes: <strong>October 6</strong> at 23:59 ET</li> <li>Abstract submission closes: <strong>September 15</strong> at 23:59 ET</li> </ul></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="block block-layout-builder block-inline-blockuw-cbl-call-to-action"> <div class="uw-cta "> <div class="uw-cta__center-wrapper"> <aside class="uw-cta__aside org-default"><a href="https://events.perimeterinstitute.ca/event/1107/registrations/" class="uw-cta__link"> <div class="uw-cta__wrapper"> <div class="call-to-action-theme-org-default"> <div class="uw-cta__text uw-cta__text--small">IN-PERSON AND VIRTUAL PARTICIPATION AVAILABLE</div> <div class="uw-cta__text uw-cta__text--big">Register now</div> </div> </div> </a> </aside><aside class="uw-cta__aside org-default"><a href="https://events.perimeterinstitute.ca/event/1107/abstracts/" class="uw-cta__link"> <div class="uw-cta__wrapper"> <div class="call-to-action-theme-org-default"> <div class="uw-cta__text uw-cta__text--small">SUBMISSIONS ARE DUE SEPTEMBER 15</div> <div class="uw-cta__text uw-cta__text--big">Submit an abstract</div> </div> </div> </a> </aside></div> </div> </div> </div> </section><section class="uw-contained-width uw-contained-width--wide uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none uw-section-alignment--top-align-content uw-section__background--org-stp layout layout--uw-2-col even-split uw-section__background-color"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Speakers</h2> <ul><li><strong>Christian Bauer</strong> - Lawrence Berkeley National Laboratory </li> <li><strong>Sergey Bravyi</strong> - IBM Research - Thomas J. Watson Research Center</li> <li><strong>Matthew Fisher</strong> - University of California, Santa Barbara</li> <li><strong>Masahito Hayashi</strong> - Chinese University of Hong Kong</li> <li><strong>Dakshita Khurana</strong> - University of Illinois Urbana-Champaign</li> <li><strong>Aleksander Kubica </strong>- Yale University</li> <li><strong>Brian Swingle</strong> - Brandeis University</li> <li><strong>Yu-Xiang Yang</strong> - The University of Hong Kong</li> </ul></div> </div> </div> </div> <div class="layout__region layout__region--second"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Co-Chairpersons</h2> <ul><li>Marcela Carena - Perimeter Institute, University of Chicago, Fermilab</li> <li>Norbert Lütkenhaus - University of ݮƵ, IQC</li> </ul></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2><span>Scientific organizers and conveners</span></h2> </div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none uw-section-alignment--top-align-content layout layout--uw-2-col even-split"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <ul><li>Alexandre Blais - Université de Sherbrook</li> <li>Anne Broadbent - University of Ottawa</li> <li>Shohini Ghose - Quantum Algorithms Institute</li> <li>David Gosset - University of ݮƵ, IQC, Perimeter Institute</li> <li>Tim Hsieh - Perimeter Institute</li> <li>Raymond Laflamme - University of ݮƵ, IQC</li> <li>Alex May - Perimeter Institute</li> </ul></div> </div> </div> </div> <div class="layout__region layout__region--second"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <ul><li>Christine Muschik - University of ݮƵ, IQC, Perimeter Institute</li> <li>John Preskill - CalTech</li> <li>Barry Sanders - University of Calgary, Quantum City </li> <li>Aephraim Steinberg - University of Toronto, CQIQC</li> <li>Beni Yoshida - Perimeter Institute</li> <li>Peter Zoller - University of Innsbruck, IQOQI</li> <li>Sisi Zhou - Perimeter Institute</li> </ul></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Got questions? We're here to help!</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <ul><li>If you have questions about the call for abstracts with respect to your research, please contact <a href="mailto:amay@perimeterinstitute.ca">Alex May</a>.</li> <li>Any logistical questions about the application process, the website or decision timelines should be directed to <a href="mailto:conferences@perimeterinstitute.ca">conferences@perimeterinstitute.ca</a> or <a href="mailto:iqc.events@uwaterloo.ca">iqc.events@uwaterloo.ca</a>.</li> </ul></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-section__background--neutral uw-column-separator--none layout layout--uw-1-col uw-section__background-color"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="highlight"><em>The Institute for Quantum Computing (IQC) is proud to support <a href="https://iyqcda.cap.ca/">IYQ Canada</a> and the <a href="https://quantum2025.org/about/">International Year of Quantum Science & Technology (IYQ)</a>. </em></p> <div class="uw-media media media--type-uw-mt-image media--view-mode-uw-vm-standard-image align-center" data-height="200" data-width=""> <img src="/institute-for-quantum-computing/sites/default/files/uploads/images/homepage-banner-potential-3-2.png" width="355.55555555556" height="200" alt="International Year of Quantum Science and Technology logo" loading="lazy" typeof="foaf:Image" /></div> </div> </div> </div> </div> </section> Wed, 13 Aug 2025 19:39:48 +0000 Emily Martin 3886 at /institute-for-quantum-computing Toronto Ultracold Atom Network (TUCAN) meeting 2025 /institute-for-quantum-computing/events/toronto-ultracold-atom-network-tucan-meeting-2025 <span class="field field--name-title field--type-string field--label-hidden">Toronto Ultracold Atom Network (TUCAN) meeting 2025</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Tue, 04/29/2025 - 12:47</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="enlarged">On Wednesday, May 7, 2025 the Institute for Quantum Computing will host the Toronto Ultracold Atom Network (TUCAN) meeting.</p> <p>The one-day meeting aims to both share knowledge and strengthen ties between local ultracold atom groups. The day will consist of talks and posters on topics including trapped ions, optical lattices, Bose-Einstein condensates and optical techniques for atomic state manipulation.</p> <h2>Organizers </h2> <p><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="3acc06be-d44c-45fe-a8f4-35831a15aa04" href="/institute-for-quantum-computing/profiles/kazi-rajibul-islam">Rajibul Islam</a>, <a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="62141f22-ba9f-4d93-a332-d02c4d011951" href="/institute-for-quantum-computing/profiles/alan-jamison">Alan Jamison</a>, <a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="35c3f6ea-71d4-4d99-bac8-ffee2671724c" href="/institute-for-quantum-computing/contacts/katie-mcdonnell">Katie McDonnell</a>, <a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="9087a744-bc3e-4c64-a5b6-9d760f8431bf" href="/institute-for-quantum-computing/contacts/collin-epstein">Collin Epstein</a>, and <a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="aa64a783-c480-4725-83ef-2c5d157d803d" href="/institute-for-quantum-computing/contacts/akimasa-ihara">Akimasa Ihara</a> from the Institute for Quantum Computing (IQC).</p> <h2>Location</h2> <p>TUCAN will be hosted in the <a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="d145fc50-b24d-4054-8497-1e36bd2f1d5d" href="/institute-for-quantum-computing/join-the-quantum-journey/iqc-locations-directions-and-parking">Mike & Ophelia Lazaridis Quantum-Nano Centre (QNC)</a> Room 0101.</p> </div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Schedule</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <table width="500"><thead><tr><th scope="col">Time</th> <th scope="col">Agenda</th> <th scope="col">Speaker</th> <th scope="col">Research group</th> </tr></thead><tbody><tr><th scope="row">0930 - 1100</th> <td> <p class="caption">Arrival, coffee and refreshments</p> </td> <td> </td> <td> </td> </tr><tr><th scope="row">1000 - 1010</th> <td>Welcome</td> <td> </td> <td> </td> </tr><tr><th scope="row">1010 - 1030</th> <td> <p><a href="#zutt">High-dimensional qudit quantum computing with trapped 137Ba+ ions</a></p> </td> <td>Nicholas Zutt</td> <td> <p><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="19ab9d93-2fb8-4433-bf9d-dfd9427a4447" href="/institute-for-quantum-computing/research/groups/trapped-ion-quantum-control-lab">Trapped Ion Quantum Control Lab</a></p> </td> </tr><tr><th scope="row">1030 - 1050</th> <td><a href="#khatai">Progress towards a barium-133 trapped ion quantum processor</a></td> <td>Ali Khatia</td> <td><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="6cd671fc-f8e6-4575-9394-1616bf18900c" href="/institute-for-quantum-computing/research/groups/laboratory-quantum-information-trapped-ions">Laboratory for Quantum Information with Trapped Ions (QITI)</a></td> </tr><tr><th scope="row">1050 - 1110</th> <td> <p><a href="#tow">A cryogenic single-ion Sr+ clock</a>  </p> </td> <td>Takahiro Tow</td> <td><a href="https://www.physics.utoronto.ca/~vutha/">Vutha group</a></td> </tr><tr><th scope="row">1110 - 1130</th> <td> <p><a href="#martin">Humpty-Dumpty is three-dimensional</a></p> </td> <td>Jim Martin</td> <td><a href="https://jddmartin.github.io/">Martin group</a></td> </tr><tr><th scope="row"> <p>1130 - 1230</p> </th> <td> <p class="caption">Lunch - St. Jerome's</p> </td> <td> </td> <td> </td> </tr><tr><th scope="row">1230 - 1250</th> <td> <p><a href="#sullivan">Magneto-optical trapping of neutral atoms with light-induced effective magnetic fields</a></p> </td> <td>Nicholas Sullivan</td> <td><a href="https://www.artsci.utoronto.ca/about/glance/new-faculty/2023-24/boris-braverman">Braverman group</a></td> </tr><tr><th scope="row">1250 - 1310</th> <td> <p><a href="#kamp">Dynamical instability as a PT-symmetry breaking phase transition in a rotating Bose-Einstein condensate </a></p> </td> <td>Denise Kamp</td> <td> <p><a href="https://physics.mcmaster.ca/people/faculty/O'Dell/O%27Dell_DHJ_h.html">O'Dell group</a></p> </td> </tr><tr><th scope="row">1310 - 1330</th> <td> <p><a href="#khoubyarian">Feedback Control Systems for the Stabilization of Traps in Large Rydberg Atom Arrays</a></p> </td> <td>Soroush Khoubyarian</td> <td><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="be21a176-1709-4dbc-882a-4973040385fd" href="/institute-for-quantum-computing/profiles/alexandre-cooper-roy">Quantum Simulation Group</a></td> </tr><tr><th scope="row"> <p>1330 - 1350</p> </th> <td> <p class="caption">Coffee break and networking</p> </td> <td> </td> <td> </td> </tr><tr><th scope="row">1350 - 1410</th> <td> <p><a href="#xie">Dimer-associated contact of a unitary Fermi gas</a></p> </td> <td>Kevin Xie</td> <td> <p dir="ltr"><a href="https://www.thywissenlab.ca/home">Thywissen Lab</a></p> </td> </tr><tr><th scope="row">1410 - 1430</th> <td> <p><a href="#houk">Metasurface-based cavities for quantum optical applications with atomic ensembles</a></p> </td> <td>Anya Houk</td> <td> <p><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="51c7836b-b669-4b7d-b477-dbbf74485b47" href="/institute-for-quantum-computing/research/groups/nano-photonics-and-quantum-optics-laboratory">Nano-Photonics and Quantum Optics Laboratory</a></p> </td> </tr><tr><th scope="row">1430 - 1600</th> <td> <p><strong>Poster session: </strong></p> <ul><li>All attendees are welcome to bring posters. </li> <li>The poster display boards are 5ft wide by 4 ft high.</li> <li>Fixtures for mounting the posters to the boards will be provided.</li> </ul></td> <td> </td> <td> </td> </tr><tr><th scope="row">1600 - 1645</th> <td>Lab tours</td> <td> </td> <td> </td> </tr></tbody></table></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="block block-uw-custom-blocks block-uw-cbl-expand-collapse"> <h2 class="block-title">Abstracts</h2> <div id="68a7d58910e40" class="uw-exp-col"> <div class="uw-exp-col__controls"> <button class="uw-exp-col__button uw-exp-col__button--controls" data-type="expand-all">Expand All</button> <button class="uw-exp-col__button uw-exp-col__button--controls" data-type="collapse-all">Collapse All</button> </div> <details class="uw-details"><summary class="details__summary"><h3>Nicholas Sullivan</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/nicholas-sullivan" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="sullivan" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h3>Magneto-optical trapping of neutral atoms with light-induced effective magnetic fields    </h3> <p>We introduce a novel method for producing ensembles of cold neutral atoms without the use of magnetic fields. The proposed laser cooling and trapping method is similar to the typical magneto-optical trap (MOT), but replaces the quadrupole magnetic field with an asymmetrical arrangement of additional laser beams that produce a fictitious magnetic field through state-dependent light shifts. This effective field induces a spatial dependence on the scattering force of the optical molasses beams, taking the place of the real magnetic field in a MOT. We show that this “opto-optical trap” can be applied to commonly trapped atomic species and discuss the unique advantages and potential applications of this approach to laser trapping of atoms.</p> <p><mark><a href="https://www.artsci.utoronto.ca/about/glance/new-faculty/2023-24/boris-braverman">Braverman group</a></mark></p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Takahiro Tow</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/takahiro-tow" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="tow" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>A cryogenic single-ion Sr+ clock</h2> <p>Single-ion clocks are among the most accurate devices ever constructed. However, even the best clocks -- such as the Sr+ clock operated by the National Research Council of Canada -- are limited by systematic errors caused by blackbody radiation and background-gas collisions. To mitigate these two problems, we have designed and built a Sr+ clock that operates at 4 K: cryogenic operation suppresses both blackbody radiation and collisional shifts by many orders of magnitude. I will discuss the rationale for developing this device, present some unique aspects of its design, and discuss our efforts to characterize its performance.</p> <p><mark><a href="https://www.physics.utoronto.ca/~vutha/">Vutha group</a></mark></p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Jim Martin</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/jim-martin" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="martin" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Humpty-Dumpty is three-dimensional</h2> <p>Matter-wave Interferometry using Stern-Gerlach based beam-splitters has been described by Schwinger and co-workers [1] as a task as difficult as putting Humpty-Dumpty back together again!  Nonetheless, such a Stern-Gerlach Interferometer (SGI) has recently been demonstrated [2].  </p> <p>As shown by Comparat [3], simple models in one spatial dimension are insufficient to analyze SGIs, due to the three-dimensional nature of magnetic fields. I will discuss these effects on SGI using Rydberg atoms with electric field gradients, and the surprising prediction that many superficially similar SGI protocols are significantly different, with only some protocols demonstrating robust visibility in experimentally relevant regimes, and others infeasible.  </p> <p>Work done in collaboration with Danny Meng and Darren Chan.</p> <p>[1] B.-G. Englert, J. Schwinger, and M. O. Scully, “Is spin coherence like Humpty-Dumpty? I. Simplified treatment”, en, Foundations of Physics 18, 1045–1056 (1988).</p> <p>[2] Y. Margalit, O. Dobkowski, Z. Zhou, O. Amit, Y. Japha, S. Moukouri, D. Rohrlich, A. Mazumdar, S. Bose, C. Henkel, and R. Folman, “Realization of a complete Stern-Gerlach interferometer: Toward a test of quantum gravity”, Science Advances 7, Publisher: American Association for the Advancement of Science, eabg2879 (2021).</p> <p>[3] D. Comparat, “Limitations for field-enhanced atom interferometry”, Physical Review A 101, Publisher: American Physical Society, 023606 (2020). "</p> <p><mark><a href="https://jddmartin.github.io/">Martin group</a></mark></p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Soroush Khoubyarian</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/soroush-khoubyarian" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="khoubyarian" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Feedback Control Systems for the Stabilization of Traps in Large Rydberg Atom Arrays</h2> <p>Quantum processors have the potential to perform computations beyond the capabilities of classical processors. Realizing this potential would enable innovative applications in materials science, computational chemistry, and quantum many-body physics. Among the various platforms under development, Rydberg atom array quantum processors stand out for their scalability and controllability.</p> <p>However, a critical challenge is generating large arrays of optical traps that are uniform in space and stable in time. Here, we introduce a closed-loop feedback system to create large, homogeneous arrays of optical traps whose power is stabilized in real time. The system tracks the power of more than a thousand traps on a camera, continuously updating polychromatic RF tones actuating a pair of acousto-optic deflectors. This enables the simultaneous optimization of processes such as trapping, cooling, and imaging of single neutral atoms in all traps.</p> <p>We demonstrate a reduction in shot-to-shot fluctuations in loading efficiency and an increase in relative stability when performing adiabatic ramp-down experiments. This system can readily be deployed to implement atom-selective quantum gates across a large field of view and reduce atom loss during atom displacement.</p> <p><mark><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="be21a176-1709-4dbc-882a-4973040385fd" href="/institute-for-quantum-computing/profiles/alexandre-cooper-roy">Quantum Simulation Group</a></mark></p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Anya Houk</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/anya-houk" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="houk" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Metasurface-based cavities for quantum optical applications with atomic ensembles</h2> <p><mark><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="51c7836b-b669-4b7d-b477-dbbf74485b47" href="/institute-for-quantum-computing/research/groups/nano-photonics-and-quantum-optics-laboratory">Nano-Photonics and Quantum Optics Laboratory</a></mark></p> <p>Atomic ensembles coupled with cavity quantum electrodynamics (QED) offer a promising platform for quantum computing and networking, though with large challenges in implementation and scalability. We explore the use of metasurfaces and photonic crystals, sub-wavelegth nanostructues used to engineer optical wavefronts, to build exotic cavities for enhaced light-matter interaction. We present novel dichroic cavity designs and implementations tailored for free-space and fiber-integrated configurations.</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Ali Khatai</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/ali-khatai" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="khatai" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Progress towards a barium-133 trapped ion quantum processor</h2> <p>We present our recent progress in developing a barium based trapped ion quantum processor using a microfabricated surface trap with 94 controllable DC electrode channels. Barium ions are among the most promising qubit candidates due to their long-lived quantum states and visible-wavelength optical transitions, allowing the use of commercial optics and waveguide-based modulators for individual qubit control.</p> <p>Our trap is centrally mounted in the vacuum chamber, departing from conventional flange-mounted designs to maximize optical access while maintaining ultra-high vacuum conditions (3×10⁻¹¹ mbar). We highlight two major technical challenges: building a custom in-vacuum wire harness with 100 electrical connections to the trap, and implementing a multi-species barium atomic source that includes both radioactive barium-133 salt and rapidly oxidizing barium metal, each requiring specialized preparation and installation methods.</p> <p><mark><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="6cd671fc-f8e6-4575-9394-1616bf18900c" href="/institute-for-quantum-computing/research/groups/laboratory-quantum-information-trapped-ions">Laboratory for Quantum Information with Trapped Ions (QITI)</a></mark></p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Nicholas Zutt</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/nicholas-zutt" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="zutt" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>High-Dimensional Qudit Quantum Computing with Trapped 137Ba+ Ions</h2> <p>Authors: Nicholas CF Zutt, Gaurav A Tathed, Pei Jiang Low, Crystal Senko</p> <p>The angular momentum eigenstates of the unpaired electron in trapped 137Ba+ ions offer a promising pathway toward high-fidelity qudit (d > 2) encoding. Due to the nonzero nuclear spin (I = 3/2), the 6S1/2 and 5D5/2 manifolds contain, respectively, 8 and 24 non-degenerate levels at intermediate magnetic fields (∼ few Gauss). Leveraging recent developments in state preparation techniques for trapped ion quantum computing, we demonstrate high-fidelity (> 99.5%) state preparation and measurement results over 25 basis states, the maximal measurable qudit encoding across the 6S1/2 and 5D5/2 manifolds in 137Ba+.</p> <p>We demonstrate coherent control over this enlarged Hilbert space by performing Ramsey-type coherence probing measurements (generating many-state superpositions and probing phase-sensitive population recovery) and benchmark the scaling of decohering effects with increasing qudit dimension. We discuss the largest contributors to error in our system and the steps needed to maintain highdimensional coherence (as measured via the contrast of Ramsey-type measurements) in this qudit implementation.</p> <p>Finally, we implement two-qubit algorithms (BernsteinVazirani and Grover’s search) on this single trapped ion qudit. This work establishes the feasibility of using trapped ions for large-qudit (d > 10) quantum computation, which is a promising alternative approach to expanding the Hilbert space in trapped ion quantum computing.</p> <p>This research was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Canada Research Chairs.</p> <p><mark><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="19ab9d93-2fb8-4433-bf9d-dfd9427a4447" href="/institute-for-quantum-computing/research/groups/trapped-ion-quantum-control-lab">Trapped Ion Quantum Control Lab</a></mark></p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Kevin Xie</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/kevin-xie" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="xie" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Dimer-association contact of a unitary Fermi gas    </h2> <p>Interaction shifts of spectroscopic lines are a nuisance for atomic clocks, but also a signature of two-body correlations. We prepare a unitary Fermi gas of potassium-40, where atom-atom correlations manifest in the radiofrequency (rf) transfer spectra between internal states. In certain cases, the complete spectrum has a negative total clock shift, in seeming disagreement with the well studied positive high-frequency tail governed by the contact parameter.</p> <p>We report that the “missing link” is a relatively deeply bound ac dimer. With a highly concentrated spectral weight, rf pulses on microsecond timescales can produce significant dimer-association rates, while Fourier broadening does not convolve the bare atomic resonance. We calibrate a Fourier-width-dominated dimer lineshape and observe that the integrated spectral weight and clock shift are directly proportional to correlations in the initial state extracted from the usual high- frequency tail.</p> <p>The results are compared both to an analytic model with finite effective range and to a coupled-channels calculation. Our measurements inform the complete rf spectra of a unitary Fermi gas and provide a new tool for rapid observation of pair correlation dynamics.</p> <p><mark><a href="https://www.thywissenlab.ca/home">Thywissen Lab</a></mark></p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Denise Kamp</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/denise-kamp" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="kamp" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Dynamical instability as a PT-symmetry breaking phase transition in a rotating Bose-Einstein condensate</h2> <p>We study a dilute gas of bosons in a rotating toroidal trap, focusing on a two-mode regime with a non-rotating mode and a rotating mode corresponding to a singly charged vortex. The system undergoes a symmetry-breaking transition as the ratio of interactions to disorder potential is varied, spontaneously selecting one mode, demonstrating macroscopic quantum self-trapping. The symmetry breaking is associated with dynamical instabilities driven by complex eigenvalues that can occur in a theoretical treatment as the Bogoliubov Hamiltonian is non-Hermitian, essentially because a U(1) symmetry is broken by choosing a phase for the BEC. A special feature of non-Hermitian quantum theory is that PT-symmetry replaces self-adjointness and we explore the connection between dynamical instability and PT-symmetry breaking phase transitions in this system.</p> <p><mark><a href="https://physics.mcmaster.ca/people/faculty/O'Dell/O%27Dell_DHJ_h.html">O'Dell group</a></mark></p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details></div> </div> </div> </section> Tue, 29 Apr 2025 16:47:11 +0000 Takudzwa Chipo Valerie Mudzongo 3777 at /institute-for-quantum-computing ETSI/IQC Quantum Safe Cryptography Conference /institute-for-quantum-computing/events/etsiiqc-quantum-safe-cryptography-conference <span class="field field--name-title field--type-string field--label-hidden">ETSI/IQC Quantum Safe Cryptography Conference</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Fri, 01/03/2025 - 12:46</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="enlarged">European Telecommunications Standards Institute (ETSI) and the Institute for Quantum Computing are thrilled to organize the 2025 edition of the ETSI/IQC Quantum Safe Cryptography Conference.</p> <p>This year, the event will be hosted physically by the Universidad Politécnica de Madrid (UPM) from 3 to 5 June 2025 in Madrid, Spain.</p> <p class="highlight">Are you active in quantum-safe cryptography?</p> <p>Here is an opportunity to be part of the conference programme: The members of the programme committee are currently calling for presentations and posters, do not miss the chance to contribute with a talk (deadline - January 15), a poster (deadline - February 25) or simply save the date.</p> <p><strong>The programme committee works towards having the programme online early April. Please note that the conference is run in English and that registration will be open by the end of March.</strong></p> </div> </div> </div> <div class="block block-layout-builder block-inline-blockuw-cbl-call-to-action"> <div class="uw-cta "> <div class="uw-cta__center-wrapper"> <aside class="uw-cta__aside org-default"><a href="https://tinyurl.com/QSC2025CFPRESENTATIONS" class="uw-cta__link"> <div class="uw-cta__wrapper"> <div class="call-to-action-theme-org-default"> <div class="uw-cta__text uw-cta__text--small">SUBMIT YOUR PROPOSAL BY JANUARY 15, 2025</div> <div class="uw-cta__text uw-cta__text--big">Call for presentations</div> </div> </div> </a> </aside><aside class="uw-cta__aside org-default"><a href="https://tinyurl.com/QSC2025CFPOSTER" class="uw-cta__link"> <div class="uw-cta__wrapper"> <div class="call-to-action-theme-org-default"> <div class="uw-cta__text uw-cta__text--small">SUBMIT YOUR PROPOSAL BY FEBRUARY 15, 2025</div> <div class="uw-cta__text uw-cta__text--big">Call for posters</div> </div> </div> </a> </aside></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>The conference will cover the following topics:</h2> <h3>Initiatives and deployments</h3> <ul><li>Co-ordinated global, regional or national efforts on quantum-safe schemes.</li> <li>Specific initiatives towards quantum-safety within financial, telecommunication, energy and other critical sectors.</li> <li>Insights from practical deployments of post-quantum, QKD, or other quantum-safe key establishment or authentication schemes.</li> <li>Challenges to deploying quantum-safe schemes for a given use-case.</li> </ul><h3>Migration</h3> <ul><li>Migration paths and roadmaps for quantum safety and cryptographic resilience (including challenges and resolutions).</li> <li>Strategy to achieve cryptographic agility in products.</li> </ul><h3>New ideas and concepts</h3> <ul><li>Innovative ideas utilising post-quantum crypto or QKD in the real-world.</li> <li>New applications of post-quantum crypto or QKD.</li> <li>Hybrid key agreement and signatures.</li> <li>System integration of QKD and post-quantum.</li> <li>Cryptanalysis and side-channel analysis of post-quantum systems/QKD.</li> <li>Other practical quantum-safe alternatives to existing cryptographic primitives (e.g. aggregate signatures) or protocols (e.g. DNSSEC, RPKI).</li> </ul><h3>Standards and certification</h3> <ul><li>Standards for quantum cryptography devices and systems.</li> <li>Testing, metrics, validation and certification for quantum-safety.</li> <li>Standards for quantum-resistant public-key crypto algorithms.</li> </ul></div> </div> </div> <div class="block block-layout-builder block-inline-blockuw-cbl-call-to-action"> <div class="uw-cta "> <div class="uw-cta__center-wrapper"> <aside class="uw-cta__aside org-default"><a href="https://www.etsi.org/events/2450-etsi-iqc-quantum-safe-cryptography-conference-2025" class="uw-cta__link"> <div class="uw-cta__wrapper"> <div class="call-to-action-theme-org-default"> <div class="uw-cta__text uw-cta__text--small">LEARN MORE ABOUT THE CONFERENCE</div> <div class="uw-cta__text uw-cta__text--big">Visit the conference website </div> </div> </div> </a> </aside></div> </div> </div> </div> </section> Fri, 03 Jan 2025 17:46:32 +0000 Takudzwa Chipo Valerie Mudzongo 3658 at /institute-for-quantum-computing WIPC 2017 - Day 3 /institute-for-quantum-computing/events/wipc-2017-day-3 <span class="field field--name-title field--type-string field--label-hidden">WIPC 2017 - Day 3</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Wed, 11/27/2024 - 15:04</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Schedule</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="enlarged">The Women in Physics Canada (WIPC) sixth annual conference day 2 schedule.</p> <table width="500"><thead><tr><th scope="col">Time</th> <th scope="col">Agenda</th> </tr></thead><tbody><tr><th scope="row">09:30</th> <td> <p><em>Quantum connections</em></p> <p>Shohini Ghose, Wilfrid Laurier University</p> <p>From atomic structure, to the composition of stars, to teleportation, quantum physics has led to amazing discoveries and modern technologies like lasers and computers that have transformed our everyday lives. Yet the quantum world remains a mysterious place full of interesting phenomena such as entanglement and quantum uncertainty that we are now harnessing for novel information processing applications. This talk describes my journey into this weird and wonderful invisible world, and the surprising lessons I learned about physics and about being a physicist.</p> </td> </tr><tr><th scope="row">10:00</th> <td> <p><em>The eye as a window on the retina and the brain </em></p> <p>Melanie Campbell, University of ݮƵ</p> <p>In this presentation, I will discuss the application of novel imaging methods to understanding the eye and brain function.  I will discuss the use of adaptive optics for high resolution imaging of the retina to improve our knowledge of visual processing and non-invasive polarization imaging methods for the detection of biomarkers of diseases that affect the brain. The two brain diseases that I will concentrate on are Alzheimer’s disease and cerebral malaria.</p> </td> </tr><tr><th scope="row">10:30</th> <td> <p><em>Panel: Work/Life Balance</em></p> <p><strong>Moderated by</strong><br /> Jodi Szimanski, Institute for Quantum Computing</p> <p><strong>Panelists</strong><br /> Jen Schrafft, Jen Schrafft Coaching<br /> Joan Vaccaro, Griffith University in Brisbane, Australia<br /> Krister Shalm, National Institute of Standards and Technology<br /> Razieh Annabestani, Institute for Quantum Computing</p> <p>It is often perceived that work–life balance is more difficult to achieve in a STEM field than in other professions. We convened a panel of professionals who successfully advanced their scientific careers while, for example, raising children or pursuing other endeavors. Through discussions on this panel, our panelists will provide advice and answer questions on how to effectively achieve the balance that’s right for you.</p> </td> </tr><tr><th scope="row">11:30</th> <td> <p class="caption">Health break, food and drinks available</p> </td> </tr><tr><th scope="row">12:00</th> <td> <p><em>Implicit Bias Workshop</em></p> <p>Crystal Tse, Centre for Teaching Excellence, University of ݮƵ</p> <p>Social psychologists have studied varying and changing forms of prejudice – from prejudice that is more blatant and explicit to more contemporary forms of prejudice that is more subtle and implicit. In this workshop, Crystal will provide an overview of research on implicit bias with a focus on STEM fields and its wide-ranging impact on factors such as achievement, retention, and hiring. Participants will have opportunities to reflect on where implicit bias comes from and to work on developing strategies to combat implicit bias in academic and work environments.</p> </td> </tr><tr><th scope="row">13:00</th> <td> <p class="caption">Lunch, food and drinks available</p> </td> </tr><tr><th scope="row">13:30</th> <td> <p>Lab tours</p> </td> </tr></tbody></table></div> </div> </div> <div class="block block-layout-builder block-inline-blockuw-cbl-call-to-action"> <div class="uw-cta "> <div class="uw-cta__center-wrapper"> <aside class="uw-cta__aside org-default"><a href="/institute-for-quantum-computing/events/conferences/women-physics-canada-wipc-2017" class="uw-cta__link"> <div class="uw-cta__wrapper"> <div class="call-to-action-theme-org-default"> <div class="uw-cta__text uw-cta__text--small">GO BACK TO</div> <div class="uw-cta__text uw-cta__text--big">WIPC 2017 conference page</div> </div> </div> </a> </aside></div> </div> </div> </div> </section> Wed, 27 Nov 2024 20:04:55 +0000 Takudzwa Chipo Valerie Mudzongo 3618 at /institute-for-quantum-computing WIPC 2017 - Day 2 /institute-for-quantum-computing/events/wipc-2017-day-2 <span class="field field--name-title field--type-string field--label-hidden">WIPC 2017 - Day 2</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Wed, 11/20/2024 - 15:56</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Schedule</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="enlarged">The Women in Physics Canada (WIPC) sixth annual conference day 2 schedule.</p> <table width="500"><thead><tr><th scope="col">Time</th> <th scope="col">Agenda</th> </tr></thead><tbody><tr><th scope="row">09:30</th> <td> <p><a href="#donna">Donna Strickland, University of ݮƵ</a></p> <p><em>Multi-frequency Raman Generation for Intense Ultrashort Pulses</em></p> </td> </tr><tr><th scope="row">10:00</th> <td> <p><a href="#lauren">Lauren Hayward Sierens, Perimeter Institute</a></p> <p><em>Universal quantities from entanglement entropies</em></p> </td> </tr><tr><th scope="row">10:30</th> <td> <p class="caption">Health break, food and drinks available</p> </td> </tr><tr><th scope="row">11:00</th> <td> <p><a href="#edward">Dr. Edward Beharry, Counselling Services at the University of ݮƵ</a></p> <p><em>Mental Health Workshop</em></p> </td> </tr><tr><th scope="row">12:00</th> <td> <p class="caption">Lunch, food and drinks available</p> <p class="caption"><a href="#meetup">Queer, Trans, and Allies Meetup</a></p> </td> </tr><tr><th scope="row">13:00</th> <td> <p><a href="#talks">Student talks</a></p> </td> </tr><tr><th scope="row">14:30</th> <td> <p class="caption">Health break, food and drinks available</p> </td> </tr><tr><th scope="row">15:00</th> <td> <p><a href="#panel">Panel discussion</a></p> <p><em>How to Choose a Supervisor and Build a Good Working Relationship</em></p> </td> </tr><tr><th scope="row">16:00</th> <td> <p><a href="#john">John R. Dutcher, University of Guelph</a></p> <p><em>Unlocking the Potential of Nature’s Nanotechnology: From Serendipitous Discovery to Fundamental Science to Commercialization</em></p> </td> </tr><tr><th scope="row">18:00</th> <td> <p>Banquet at the University Club</p> </td> </tr></tbody></table></div> </div> </div> <div class="block block-layout-builder block-inline-blockuw-cbl-call-to-action"> <div class="uw-cta "> <div class="uw-cta__center-wrapper"> <aside class="uw-cta__aside org-default"><a href="/institute-for-quantum-computing/events/conferences/women-physics-canada-wipc-2017" class="uw-cta__link"> <div class="uw-cta__wrapper"> <div class="call-to-action-theme-org-default"> <div class="uw-cta__text uw-cta__text--small">GO BACK TO</div> <div class="uw-cta__text uw-cta__text--big">WIPC 2017 conference page</div> </div> </div> </a> </aside></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--bottom uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="speakers" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Speakers</h2> </div> </div> </div> <div class="block block-uw-custom-blocks block-uw-cbl-expand-collapse"> <div id="68a7d5895d5e8" class="uw-exp-col"> <div class="uw-exp-col__controls"> <button class="uw-exp-col__button uw-exp-col__button--controls" data-type="expand-all">Expand All</button> <button class="uw-exp-col__button uw-exp-col__button--controls" data-type="collapse-all">Collapse All</button> </div> <details class="uw-details"><summary class="details__summary"><h2>Donna Strickland</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/donna-strickland" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="donna" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Multi-frequency Raman Generation for Intense Ultrashort Pulses</h2> <p>Since the advent of lasers, many different nonlinear optical techniques have led to shorter, higher-intensity pulses. At ݮƵ, we are studying the nonlinear process of Multi-frequency Raman generation, which efficiently generates a rainbow of colours.  By phasing all the colours together ultrashort pulses with durations as short as single femtoseconds (10<sup>-15</sup> s) can be created.  The goal of this work is to make short intense optical pulses to image molecular motion.</p> <p><strong>Affiliation:</strong> University of ݮƵ</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Lauren Hayward Sierens</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/lauren-hayward-sierens" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="lauren" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Universal quantities from entanglement entropies</h2> <p>Quantum entanglement entropies and their scaling behaviours offer a unique means of describing quantum many-body systems. Most systems in their ground state obey a so-called “area law” whereby the leading contribution to the bipartite entanglement entropy scales with the size of the bipartition’s boundary. There can be subleading corrections to this area law behaviour that depend upon the size and shape of the entangled regions, and for systems at a quantum critical point, such corrections can potentially contain universal quantities. I will discuss numerical strategies for extracting such quantities in cases where the entangled regions have interesting geometrical features. These universal numbers characterize an underlying theory and offer insight into the connections and relationships between quantum systems at criticality.</p> <p><strong>Affiliation:</strong> Perimeter Institute</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Dr. Edward Beharry</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/dr-edward-beharry-0" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="edward" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Mental Health Workshop</h2> <p>Students often feel overwhelmed in undergraduate and graduate school which can affect both their physical and mental health. In this workshop I will provide coping strategies and techniques as well as recommendations on how graduate departments and academic advisors can help graduate students.</p> <p><strong>Affiliation:</strong> Counselling services at the University of ݮƵ</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Queer, Trans, and Allies Meetup</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/queer-trans-and-allies-meetup" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="meetup" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>FemPhys will be hosting a meetup for all participants who are a part of the LGBTQIA+ community and their dedicated allies.</p> <p>About the organizers: FemPhys is a campus organization at UݮƵ dedicated to community building, education, and creating better policy in and around the Physics department. Follow them on <a href="http://twitter.com/femphys">Twitter</a>, check out their <a href="http://uwaterloo.ca/femphys">website</a>, or find a member at the conference for more information!</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Panel: How to Choose a Supervisor and Build a Good Working Relationship</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/panel-how-choose-supervisor-and-build-good-working" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="panel" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>Choosing a supervisor is an extremely important decision that can determine your success during your academic career. Your supervisor is your mentor, advisor and sounding board. Factors such as a supervisor’s expertise, experience, availability, personality, research and publications will help you determine who will complement your research and learning style the most. Panelists will offer advice on how to choose a supervisor whom is right for you and how to positively build your relationship from the day that you begin. </p> <h3>Moderated by</h3> <ul><li>Allison Sachs, Institute for Quantum Computing</li> </ul><h3>Panelists</h3> <ul><li>Eduardo Martin-Martinez, Department of Applied Mathematics, University of ݮƵ</li> <li>Katanya Kuntz, Institute for Quantum Computing</li> <li>Lauren Hayward Sierens, Perimeter Institute for Theoretical Physics</li> <li>Melanie Campbell, University of ݮƵ</li> </ul></div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>John R. Dutcher</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/john-r-dutcher-0" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="john" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Unlocking the Potential of Nature’s Nanotechnology: From Serendipitous Discovery to Fundamental Science to Commercialization</h2> <p>Nature offers amazing examples of nanostructured molecules and materials. I will focus on phytoglycogen, a highly-branched polymer of glucose produced in the form of dense, monodisperse nanoparticles by some varieties of plants such as sweet corn. The particles are chemically simple, but have a special dendrimeric or tree-like structure that produces interesting and unusual properties such as extraordinary water retention, and low viscosity and exceptional stability in water.</p> <p>These properties point to a wide variety of potential applications from cosmetics to drug delivery, yet these applications need to be enabled by a deeper understanding of the unique structure of the particles and their interaction with water. I will describe our journey from the initial serendipitous discovery of the particles, to our detailed analysis of their structure and hydration, to the commercialization of this sustainable nanotechnology in our Guelph-based spinoff company Mirexus Biotechnologies.</p> <p><strong>Affiliation:</strong> University of Guelph</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details></div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="talks" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Student talks </h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="enlarged">Student talks are scheduled Thursday, July 26 1 to 2:30 p.m. Each talk is 12-minutes with 3-minutes for questions.</p> <h3>Lazaridis QNC 1502</h3> <ul><li><a href="#allison">Allison Sachs, Institute for Quantum Computing</a></li> <li><a href="#yasaman">Yasaman K. Yazdi, University of ݮƵ and Perimeter Institute</a></li> <li><a href="#nayeli">Nayeli A. Rodríguez-Briones, Institute for Quantum Computing</a></li> <li><a href="#meenu">Meenu Kumari, Institute for Quantum Computing</a></li> <li><a href="#angelika">Angelika Fertig, Perimeter Institute</a></li> </ul><h3> Lazaridis QNC 0101</h3> <ul><li><a href="#laura">Laura Saunders, University of Toronto and McGill University</a></li> <li><a href="#kimberlee">Kimberlee Dube, University of Saskatchewan</a></li> <li><a href="#whitney">Whitney Bader, University of Toronto</a></li> <li><a href="#abene">Abene Abderrahmane, University of Valenciennes</a></li> <li><a href="#emily">Emily Tyhurst, University of British Columbia</a><br />  </li> </ul></div> </div> </div> <div class="block block-uw-custom-blocks block-uw-cbl-expand-collapse"> <div id="68a7d5895fe66" class="uw-exp-col"> <div class="uw-exp-col__controls"> <button class="uw-exp-col__button uw-exp-col__button--controls" data-type="expand-all">Expand All</button> <button class="uw-exp-col__button uw-exp-col__button--controls" data-type="collapse-all">Collapse All</button> </div> <details class="uw-details"><summary class="details__summary"><h3>Allison Sachs</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/allison-sachs-0" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="allison" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Divergenceless methods to quantify vacuum correlations in quadratically coupled fields</h2> <p>The vacuum state of a quantum field possesses correlations, both classical and quantum, between spacelike separated regions [1,2]. By reading out these correlations, we can gather information about the structure of spacetime [3,4]. Additionally, vacuum correlations can, in principle, be used as a resource for quantum communication and other quantum information tasks. Past works have studied this phenomenon, called entanglement harvesting [5,6], in the case of detectors coupling linearly to a bosonic field; e.g. two atoms coupled to the electromagnetic field.</p> <p>We present new divergence-free methods to study correlations harvested from quadratically coupled fields to a particle detectors (such as Unruh-DeWitt). These methods become relevant in the study of vacuum entanglement of fermionic fields and interacting bosonic theories. For example, the entanglement structure of the fermionic vacuum has not yet been studied in detail. The chief reason is that we lacked an adequate divergence-free equivalent to the Unruh-DeWitt particle detector model for fermionic fields [7].</p> <p>We expect that these studies will shed light on the nature of fermionic field vacuum entanglement, which displays distinctive features not present in the bosonic case as observed in the study of the Unruh effect [8,9].</p> <p>Work in collaboration with: Eduardo Martín-Martínez and Robert B. Mann.</p> <p>[1] S. J. Summers and R. F. Werner, Phys. Lett. A 110 , 257 (1985).<br /> [2] S. J. Summers and R. F. Werner, J. Math. Phys. 28, 2<br /> [3] G. V. Steeg and N. C. Menicucci, Phys. Rev. D 79, 044027 (2009).<br /> [4] E. Martin-Martinez, A. R. H. Smith, D. R. Terno, Phys. Rev. D 93, 044001 (2016)</p> <p><strong>Affiliation:</strong> Institute for Quantum Computing</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Yasaman K. Yazdi</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/yasaman-k-yazdi" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="yasaman" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Zero Modes and Entanglement Entropy</h2> <p>Ultraviolet divergences are widely discussed in studies of entanglement entropy. Also present, but much less understood, are infrared divergences due to zero modes in the field theory. In this talk, I will discuss the importance of carefully handling zero modes in entanglement entropy. I will give an explicit example for a chain of harmonic oscillators in 1D, where a mass regulator is necessary to avoid an infrared divergence due to a zero mode. I will also comment on a surprising contribution of the zero mode to the UV-scaling of the entanglement entropy.</p> <p><strong>Affiliation:</strong> University of ݮƵ and Perimeter Institute</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Nayeli A. Rodríguez-Briones</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/nayeli-rodriguez-briones" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="nayeli" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Quantum energy teleportation as a tool to keep quantum computers cool</h2> <p>Combining quantum thermodynamics with concepts of quantum field theory such as the quantum interest conjecture and quantum energy teleportation, we show that a long standing upper bound on the cooling limits of algorithmic cooling methods can be broken by exploiting system correlations due to internal interaction. In particular, we exploit quantum energy teleportation to consume correlations present due to the internal interaction while extracting work locally, resulting in the purification of a target qubit. Controlled purification of quantum states is at the core of practical applications of quantum information science, especially for quantum computation. This preparation is required for initializing quantum information processors, and for a reliable supply of ancilla qubits that satisfy the fault-tolerance threshold for quantum error correction.</p> <p><strong>Affiliation:</strong> Institute for Quantum Computing</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Meenu Kumari</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/meenu-kumari" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="meenu" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Connections between Bell inequalities and symmetric extensions</h2> <p>Symmetric extendibility of quantum states has been proven to be useful in various areas of quantum information and quantum communication such as detection of entanglement, determining entanglement distillability, and characterizing anti-degradable channels. Thus, it is important to determine whether any quantum state can possess a symmetric extension or not. So far, the necessary and sufficient conditions for the existence of symmetric extension of quantum states has been known for only 2-qubit states, the question being open for 2-qudit states. We provide a sufficient condition for the non-existence of 3-qudit symmetric extension of any 2-qudit state using the existence of nonlocal quantum correlations in the quantum state measured via Bell inequalities. First, we prove that any 2-qubit state that violates the CHSH inequality cannot have a symmetric extension. Next, we prove that if a 2-qudit Bell inequality is monogamous, then any 2-qudit state that violates this inequality cannot have a symmetric extension. Finally, we conjecture Bell CGLMP inequality for 2-qutrit states to be monogamous using numerical evidences. A key feature of our work is that our analysis of qudit states is general and provides a sufficient condition for testing the symmetric extension of quantum states of any dimension.</p> <p><strong>Affiliation:</strong> Institute for Quantum Computing</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Angelika Fertig</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/angelika-fertig" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="angelika" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Quantum Tunneling with a Lorentzian Path Integral</h2> <p>We describe the tunneling of a quantum mechanical particle with a Lorentzian (real-time) path integral. The analysis is made concrete by the application to the inverted harmonic oscillator potential, where the path integral is known exactly. We apply Picard-Lefschetz theory to the time integral of the Feynman propagator at fixed energy, and show that the Euclidean integration contour is obtained as a Lefschetz thimble, or a sum of them, in a suitable limit. Picard-Lefschetz theory is used to make the integral manifestly convergent and is also essential for the saddle point or semi-classical approximation. The very simple example of the inverted harmonic oscillator presents many of the interesting feature found when dealing with instantons, such as the Stokes phenomenon and multiple relevant complex saddles.</p> <p><strong>Affiliation:</strong> Perimeter Institute</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Laura Saunders</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/laura-saunders" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="laura" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Single molecule visualization of topology-mediated interactions in supercoiled DNA</h2> <p>DNA topology is closely linked to important cellular processes such as transcription, DNA replication, and DNA repair. In the nucleus, DNA structure has long been known to consist of two strands of nucleotides wrapped around each other into a double helix. Higher order structures that are potentially important for cellular function are also known to occur in DNA, and are driven by what is called supercoiling. This term refers to the double helix winding further around itself, creating torsional strain in the DNA that can be relieved via higher order structures or local unwinding of the double helix at specific sites. These tend to correspond to important physiological regions that control for DNA replication and gene expression. While the static state of these structural changes is well understood, very little is known about supercoil-induced unwinding dynamics.</p> <p>We developed a method that monitors the unwinding of a specific site of bacterial DNA into two single strands by probing the site with a fluorescent strand of DNA designed to bind specifically to the unwound site. Our technique allows us to visualize DNA interactions and kinetics without chemically or mechanically interfering with the DNA’s structure, while obtaining high statistics under different experimental conditions. We used this to quantitatively investigate the effects of temperature and supercoiling on bacterial DNA unwinding, taking an important step toward understanding cellular processes.</p> <p><strong>Affiliation:</strong> University of Toronto and McGill University</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Kimberlee Dube</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/kimberlee-dube" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="kimberlee" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>The effect of solar rotation on stratospheric ozone as observed by OSIRIS</h2> <p>The amount of solar radiation reaching the Earth’s atmosphere varies with both the 11 year solar cycle and the 27 day solar rotation period. Ozone in the middle atmosphere is largely created through photolysis at ultraviolet wavelengths. The Optical Spectrograph and InfraRed Imaging System (OSIRIS) has been in orbit on the Odin satellite since late 2001. OSIRIS ozone profiles were used to investigate the effect of changes in solar ultraviolet flux on stratospheric ozone concentrations. Analysis was done using the fast Fourier transform, continuous wavelet transform, and cross correlations between the ozone time series and a solar proxy.</p> <p>The effects of changes in temperature were also considered. Results were consistent with those from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) from 2003 to 2008 and the Microwave Limb Sounder (MLS) from 2004 to 2007. For the time period from 2002 to 2015 a 0.1% change in ozone concentration occurred for a 1% change in solar ultraviolet flux. The validity of using OSIRIS data to analyze the effect of solar rotation on stratospheric ozone has been confirmed. This provides a larger data set and insight on the current relatively weak solar cycle that can be used in future climate modeling.</p> <p><strong>Affiliation:</strong> University of Saskatchewan</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Whitney Bader</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/whitney-bader" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="whitney" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>The still unexplained increase of atmospheric methane and heavy methane</h2> <p>Methane (CH4) is the second most important greenhouse gas emitted by human activities in the Earth’s atmosphere. Although it is roughly 200 times less abundant than carbon dioxide, it is a 28 times more potent greenhouse gas. Approximately one fifth of the changes in the Earth’s balance energy caused by human-linked greenhouse gases since the beginning of industrialization (~1750) is due to methane.</p> <p>Methane is emitted by both natural sources and human activities. Indeed, methane can be emitted to the atmosphere through coal mining, oil and gas exploitation, rice cultures, domestic ruminant animals, biomass burning, waste management, wetlands, termites, methane hydrates and ocean. In the atmosphere, due to its role on the oxidizing capacity of the atmosphere, methane is also called the detergent of the atmosphere.</p> <p>Since the beginning of the industrialization, atmospheric methane concentrations have increased by 260% to reach 1824 pbb in 2013. From the 1980s until the beginning of the 1990s, atmospheric methane was significantly on the rise, then stabilized during 1999-2006 to rise again afterwards. To this day, the source or sink responsible of this latter increase remains unexplained.</p> <p>Through each emission process, heavy molecules of methane (with one additional neutron either on a carbon or on one hydrogen atom) are emitted along methane (12CH4). The main heavy molecules of methane, called isotopologues (13CH4 and CH3D), are respectively ~110 and ~60 000 times less abundant than methane. Despite their small abundances, they give crucial information on the concentration of methane in the atmosphere and its evolution. Indeed, both isotopologues are emitted with specific emission ratio depending on the emission sources. Determining isotopic ratio of atmospheric methane is therefore a unique tracer of its budget.</p> <p>While the non-monotonous trend of methane is subject of an extensive number of studies, to our knowledge, no study of the isotopic ratio of methane derived from ground-based solar observations has been published to date. Measurements of heavy methane from Fourier Transform InfraRed spectra recorded with state of the art spectrometers installed at Eureka [Arctic, Canada] and Toronto [Ontario, Canada] will help fill this gap.</p> <p><strong>Affiliation:</strong> University of Toronto</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Abene Abderrahmane</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/abene-abderrahmane" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="abene" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Experimental study by visualisation of behavioural properties of vortex structures on the upper surface of an ogive</h2> <p>Methane (CH4) is the second most important greenhouse gas emitted by human activities in the Earth’s atmosphere. Although it is roughly 200 times less abundant than carbon dioxide, it is a 28 times more potent greenhouse gas. Approximately one fifth of the changes in the Earth’s balance energy caused by human-linked greenhouse gases since the beginning of industrialization (~1750) is due to methane. Methane is emitted by both natural sources and human activities.</p> <p>Indeed, methane can be emitted to the atmosphere through coal mining, oil and gas exploitation, rice cultures, domestic ruminant animals, biomass burning, waste management, wetlands, termites, methane hydrates and ocean. In the atmosphere, due to its role on the oxidizing capacity of the atmosphere, methane is also called the detergent of the atmosphere. Since the beginning of the industrialization, atmospheric methane concentrations have increased by 260% to reach 1824 pbb in 2013.</p> <p>From the 1980s until the beginning of the 1990s, atmospheric methane was significantly on the rise, then stabilized during 1999-2006 to rise again afterwards. To this day, the source or sink responsible of this latter increase remains unexplained.</p> <p>Through each emission process, heavy molecules of methane (with one additional neutron either on a carbon or on one hydrogen atom) are emitted along methane (12CH4). The main heavy molecules of methane, called isotopologues (13CH4 and CH3D), are respectively ~110 and ~60 000 times less abundant than methane. Despite their small abundances, they give crucial information on the concentration of methane in the atmosphere and its evolution. Indeed, both isotopologues are emitted with specific emission ratio depending on the emission sources. Determining isotopic ratio of atmospheric methane is therefore a unique tracer of its budget.</p> <p>While the non-monotonous trend of methane is subject of an extensive number of studies, to our knowledge, no study of the isotopic ratio of methane derived from ground-based solar observations has been published to date. Measurements of heavy methane from Fourier Transform InfraRed spectra recorded with state of the art spectrometers installed at Eureka [Arctic, Canada] and Toronto [Ontario, Canada] will help fill this gap.</p> <p><strong>Affiliation:</strong> University of Valenciennes</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Emily Tyhurst</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/emily-tyhurst-0" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="emily" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Surface currents in the Fraser River plume in the Strait of Georgia observed by high frequency radar and GPS-tracked drifters</h2> <p>The Fraser River is the largest undammed river on the west coast of North America, and its discharge into the Strait of Georgia near Vancouver has a substantial impact on the local oceanography.  The river-ocean interface is a complex region, and understanding how these waters flow and mix has a bearing on practical issues such as determining the fate of river-borne contaminants (three wastewater facilities discharge into the Fraser River). </p> <p>In an effort to understand the fluid dynamics of this system, and how contaminants disperse in the Strait of Georgia, two different observational data sets are compared critically:  GPS tracks from drifting buoys, and spatially-resolved flow measurements from high frequency radar backscatter.  The results shed light on both the advantages and disadvantages of these approaches, and the oceanic forces at work in the Strait of Georgia.</p> <p><strong>Affiliation:</strong> University of British Columbia</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details></div> </div> </div> </section> Wed, 20 Nov 2024 20:56:30 +0000 Takudzwa Chipo Valerie Mudzongo 3594 at /institute-for-quantum-computing WIPC 2017 - Day 1 /institute-for-quantum-computing/events/wipc-2017-day-1 <span class="field field--name-title field--type-string field--label-hidden">WIPC 2017 - Day 1</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Tue, 11/19/2024 - 14:38</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Schedule</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="enlarged">The Women in Physics Canada (WIPC) sixth annual conference day 1 schedule.</p> <table width="500"><thead><tr><th scope="col">Time</th> <th scope="col">Agenda</th> </tr></thead><tbody><tr><th scope="row">09:00</th> <td> <p class="caption">Welcome and opening remarks</p> </td> </tr><tr><th scope="row">09:30</th> <td> <p><a href="#chanda">Chanda Prescod-Weinstein, University of Washington</a></p> <p><em>From Atomic Physics to Cosmology: The Physics Life of a Black Femme</em></p> </td> </tr><tr><th scope="row">10:00</th> <td> <p><a href="#joan">Joan Vaccaro, Griffith University</a></p> <p><em>Quantum theory of time</em></p> </td> </tr><tr><th scope="row">10:30</th> <td> <p class="caption">Health break, food and drinks available</p> </td> </tr><tr><th scope="row">11:00</th> <td> <p><a href="#serge">Gender Summit 11 Announcement</a></p> <p><em>Serge Villemure will announce the <a href="http://www.gender-summit.eu/gs11-about">Gender Summit 11 North America 2017</a> coming to Canada for the first time. </em></p> </td> </tr><tr><th scope="row">11:15</th> <td> <p><a href="#panel">Panel discussion</a></p> <p><em>How to Increase Diversity in Physics</em></p> </td> </tr><tr><th scope="row">12:15  </th> <td> <p>Group photo</p> </td> </tr><tr><th scope="row">12:30</th> <td> <p class="caption">Lunch, food and drinks available</p> </td> </tr><tr><th scope="row">13:30</th> <td> <p><a href="#talks">Student talks</a></p> </td> </tr><tr><th scope="row">15:00</th> <td> <p class="caption">Health break, food and drinks available</p> </td> </tr><tr><th scope="row">15:30</th> <td> <p><a href="#peet">A.W. Peet, University of Toronto</a></p> <p><em>Quantum black hole holograms</em></p> </td> </tr><tr><th scope="row">16:00</th> <td> <p><a href="#christine">Christine Nattrass, University of Tennessee</a></p> <p><em>Melting Nuclei</em></p> </td> </tr><tr><th scope="row">16:30</th> <td> <p>Bus to Perimeter Institute</p> </td> </tr><tr><th scope="row">17:00</th> <td> <p><a href="#panel-2">Panel discussion</a></p> <p><em>Careers Outside Academia</em></p> </td> </tr><tr><th scope="row">18:00</th> <td> <p><a href="#posters">Poster session and reception</a></p> <p><em>Hosted and sponsored by Perimeter Institute</em></p> </td> </tr><tr><th scope="row">19:30</th> <td> <p>Bus to University of ݮƵ</p> </td> </tr></tbody></table></div> </div> </div> <div class="block block-layout-builder block-inline-blockuw-cbl-call-to-action"> <div class="uw-cta "> <div class="uw-cta__center-wrapper"> <aside class="uw-cta__aside org-default"><a href="/institute-for-quantum-computing/events/conferences/women-physics-canada-wipc-2017" class="uw-cta__link"> <div class="uw-cta__wrapper"> <div class="call-to-action-theme-org-default"> <div class="uw-cta__text uw-cta__text--small">GO BACK TO</div> <div class="uw-cta__text uw-cta__text--big">WIPC 2017 conference page</div> </div> </div> </a> </aside></div> </div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--bottom uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="speakers" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Speakers</h2> </div> </div> </div> <div class="block block-uw-custom-blocks block-uw-cbl-expand-collapse"> <div id="68a7d5896bc9c" class="uw-exp-col"> <div class="uw-exp-col__controls"> <button class="uw-exp-col__button uw-exp-col__button--controls" data-type="expand-all">Expand All</button> <button class="uw-exp-col__button uw-exp-col__button--controls" data-type="collapse-all">Collapse All</button> </div> <details class="uw-details"><summary class="details__summary"><h2>Chanda Prescod-Weinstein</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/chanda-prescod-weinstein-0" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="chanda" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>From Atomic Physics to Cosmology: The Physics Life of a Black Femme</h2> <p>The discovery of the Higgs boson reinforces the possibility that similar, scalar particles may exist in nature and could drive cosmological inflation. In this talk I will describe my scientific research in theoretical cosmology through the lens of my experience as a Black, Jewish, queer and femme physicist. I will describe my work with the dark matter candidate, the axion, as well as efforts to describe the universe before it was a second old, the inflationary era. I will talk about the exciting claim that dark matter axions form an exotic state of matter called a Bose-Einstein condensate and my ownwork on this idea. Along the way, I will reflect on what it means to consider these ideas while being a Black femme.</p> <p><strong>Affiliation:</strong> University of Washington</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Joan Vaccaro</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/joan-vaccaro-0" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="joan" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Quantum theory of time</h2> <p>It is a rare situation where we need to cast aside elementary assumptions that underpin our theories in order to advance them further.  To be an advance two things are required: (1) any discarded assumption must be accounted for as a consequence of something deeper, and (2) the deeper cause must have consequences (predictions) that show it is necessary. <br /><br /> I suspect that advancing our understanding of the nature of time, and dynamics in particular, is a situation of this kind.  Dynamics is conventionally assumed to be an elemental part of nature. It is incorporated axiomatically in physical theories through conservation laws and compliant equations of motion. If, however, the conservation laws and equations of motion were found to be due to deeper causes, the conventional view of dynamics being elemental would need reworking. I will show how a violation of time reversal symmetry (T violation) of the kind observed in K and B meson decay might be such a cause. <br /><br /> I use a new quantum formalism based on the principle of superposition of multiple paths that treats time and space equally.  The states of matter and fields are represented by paths over space and time.  If there is no T violation, the formalism allows an object to be localised in both space and time, i.e. it would exist only in some small region of space and in some small interval of time.  As the object would not exist before or after the time interval, there is no equation of motion and no conservation laws.  The elementary assumption of dynamics has been clearly discarded here.<br /><br /> However, the same formalism with T violation is dramatically different.  The T violation induces destructive interference between paths over time which makes it impossible for matter to remain localized at any one position.  An equation of motion (the Schrodinger equation) emerges and conservation laws are obeyed.  The discarded assumption is replaced with the emergence of dynamics as a consequence of T violation. Requirement 1 is satisfied.<br /><br /> Moreover, local variations in T violation induce corresponding variations in local clock time (like a quantum version of time dilation). I will briefly discuss how this might lead to physical evidence of the necessity of the new formalism and how it might fulfil requirement 2.</p> <p><strong>Affiliation:</strong> Griffith University</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Panel: How to Increase Diversity in Physics</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/panel-how-increase-diversity-physics" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="panel" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>A more inclusive atmosphere enhances innovation and the quality of life for everyone. Diversity in science is an issue which we should all be concerned with if we want healthy programs that reverse enrollment trends. Panelists will share their experiences and offer advice on how to increase diversity, including strategies on how to make programs and careers in physics more accessible to women. </p> <h2>Moderated by</h2> <p>Melanie Campbell, University of ݮƵ</p> <h2>Panelists</h2> <p>Chanda Prescod-Weinstein, University of Washington<br /> Chris Herdman, Institute for Quantum Computing<br /> Serge Villemure, Natural Sciences and Engineering Research Council of Canada (NSERC)<br /> Shohini Ghose, Wilfrid Laurier University</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>A.W. Peet</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/aw-peet" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="peet" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Quantum black hole holograms</h2> <p>Almost twenty years ago, J.Maldacena made a remarkable insight into the structure of both quantum field theories and quantum gravity called the AdS/CFT correspondence. Its most intriguing feature is that the (Anti de Sitter) gravity theory involved has one more spatial dimension than the (Conformal) Field Theory to which it is physically equivalent. This is reminiscent of a hologram, like the 3D picture of you on your 2D driver's licence. Furthermore, AdS physics is easy to calculate when CFT physics is not, and vice versa. This sparked applications to modelling systems as diverse as quantum critical points in condensed matter, the quark-gluon plasma, and cosmology. Other advances developed conceptual connections between the geometry of spacetime and information theoretic entanglement. Our specific focus is on using holographic CFT tools to make progress on two grand puzzles: how do classical black hole spacetimes emerge from quantum string theory, and how can information that falls into black holes be recovered? This talk will assume no prior knowledge of any of these topics.</p> <p><strong>Afiliation:</strong> University of Toronto</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Christine Nattrass</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/christine-nattrass" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="christine" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Melting Nuclei</h2> <p>Nuclei are melted in high energy collisions at the Relativistic Heavy Ion Collider (RHIC) on Long Island and the Large Hadron Collider (LHC) in Geneva, forming a liquid of quarks and gluons called the Quark Gluon Plasma (QGP).  Measurements at RHIC and the LHC cover two orders of magnitude in center of mass energy, corresponding to nearly an order of magnitude in energy density.  This phase of matter existed shortly after the Big Bang.  As it expands and cools, it refreezes, forming particles called hadrons.  We determine the properties of the QGP by studying these hadrons.</p> <p><strong>Affiliation:</strong> University of Tennessee</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Panel: Careers Outside Academia</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/panel-careers-outside-academia" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="panel-2" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>Many professionals with a physics degree leave academia for jobs in the private sector, pursuing a career where their co-workers have drastically different educational backgrounds relative to theirs. With an array of options available, we gathered professionals from both academia and the private sector to offer you with insight on how an education in physics can be applicable to many careers and the pros and cons of each career type.</p> <h2>Moderated by</h2> <p>Melanie Campbell, University of ݮƵ</p> <h2>Panelists</h2> <p>Jon Walgate, University of ݮƵ<br /> Michael Burns, ݮƵ Collegiate Institute<br /> Michelle Irvine, Google<br /> René Stock, Scotiabank</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details></div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--bottom uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="talks" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Student talks </h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="enlarged">Student talks are scheduled Wednesday, July 26 1:30 to 3:00 p.m. Each talk is 12-minutes with 3-minutes for questions.</p> <h3>Lazaridis QNC 1502</h3> <ul><li><a href="#natacha">Natacha Altamirano, University of ݮƵ and Perimeter Institute</a></li> <li><a href="#hope">Hope Boyce, McGill University</a></li> <li><a href="#nina">Nina Bonaventura, McGill University</a></li> <li><a href="#chiamaka">Chiamaka Okoli, University of ݮƵ and Perimeter Institute</a></li> </ul><h3> Lazaridis QNC 0101</h3> <ul><li><a href="#morgan">Morgan Mastrovich, Institute for Quantum Computing</a></li> <li><a href="#jennifer">Jennifer Reid, University of ݮƵ</a></li> <li><a href="#carolyn">Carolyn Cadogan, Western University</a></li> <li><a href="#emma">Emma McKay, Institute for Quantum Computing</a></li> </ul></div> </div> </div> <div class="block block-uw-custom-blocks block-uw-cbl-expand-collapse"> <div id="68a7d5896e001" class="uw-exp-col"> <div class="uw-exp-col__controls"> <button class="uw-exp-col__button uw-exp-col__button--controls" data-type="expand-all">Expand All</button> <button class="uw-exp-col__button uw-exp-col__button--controls" data-type="collapse-all">Collapse All</button> </div> <details class="uw-details"><summary class="details__summary"><h3>Natacha Altamirano</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/natacha-altamirano" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="natacha" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Weak measurements, decoherence and cosmology</h2> <p>In this work we consider a recent proposal in which gravitational interactions are mediated via  the exchange of classical information and apply it to a quantized Friedman-Robertson-Walker (FRW) universe with the assumption that any test particles must feel a classical metric. We show that such a model results in decoherence in the FRW state that manifests itself as a dark energy fluid that fills the spacetime. Motivated by quantum-classical interactions this model is yet another example of theories with violation of energy-momentum conservation whose signature could have significant consequences for the observable universe</p> <p><strong>Affiliation:</strong> University of ݮƵ and Perimeter Institute</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Hope Boyce</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/hope-boyce" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="hope" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>The Search for a Central Black Hole in the Large Magellanic Cloud</h2> <p>As one of our closest galactic neighbours, the center of the Large Magellanic Cloud (LMC) is an enticing place to look for a central black hole (BH). Due to the large size of the LMC on the sky and the complexity of its dynamics, the center of this dwarf galaxy is still only known to ∼ 30 arcmin. Here we present a new study of the stellar kinematics near the center of the LMC, and use this to provide the first constraints on the possible presence of a central black hole.</p> <p>With the impressive field of view of the Multi Unit Spectroscopic Explorer (MUSE) for the Very Large Telescope this is the largest region of the LMC mapped with integrated light. We identify and subtract the galactic foreground population and use the Calcium Triplet (∼ 850nm) spectral lines to create a 2D radial velocity map with an unprecedented spatial resolution of 1 arcmin2.</p> <p>Comparison of this map with kinematic models yields 3σ upper-mass-limit of 9 × 10^6 M⊙ for any black hole within the center of the LMC. The study of such a nearby dwarf galaxy and its potential black hole can shed light on many theories of BH formation, growth, and host system interaction.</p> <p><strong>Affiliation:</strong> McGill University</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Nina Bonaventura</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/nina-bonaventura" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="nina" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Red but not dead: a multiwavelength exploration of unexpected star formation in SpARCS Brightest Cluster Galaxies</h2> <p>We have conducted a comprehensive infrared photometric and optical spectroscopic campaign of the largest sample of Brightest Cluster Galaxies (BCGs), those selected from the Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS). Given the tension that exists between model predictions and recent observations of BCGs at z<2, we aim to uncover the dominant physical mechanism(s) guiding the stellar mass buildup of this special class of galaxies, the most massive in the Universe and uniquely residing at the centres of galaxy clusters.</p> <p>Through an unprecedented study of the far-infrared spectral energy distributions (SEDs) of 675 SpARCS BCGS between 0 < z < 1.8, and the stacked optical spectra of 93 BCGs between 0.1 < z < 1.1, we discover unexpected star formation activity occurring within these galaxies during an epoch where they are predicted to be largely devoid of material to form stars. The star-forming model fits to the broadband (3.6-500 microns) Spitzer/Herschel, far-infrared BCG SEDs are confirmed by the direct detection of emission-line signatures of ionized gas in the optical spectra. In the optical spectra we also detect the Balmer stellar absorption features and '4000 Angstrom break' indexes characteristic of a younger stellar population than anticipated for these supposed 'red and dead' elliptical galaxies.</p> <p>The discovery of vigorously star-forming BCGs down to z~0.5 challenges the accepted belief that these galaxies should only passively evolve through gas-poor, 'dry' mergers since z~4. However, it does agree with relatively recent refinements to the semi-analytic model of hierarchical structure formation that is invoked to explain BCG formation and evolution. We attribute the observed star formation to 'wet' (gas-rich) mergers and internal stellar mass losses, based on a lack of key signatures (to date) of the 'cluster cooling flows' which are usually considered to be the source of star formation in this unique class of galaxies.</p> <p><strong>Affiliation:</strong> McGill University</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Chiamaka Okoli</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/chiamaka-okoli" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="chiamaka" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>The dynamical friction effects of neutrinos as seen in the TianNu simulation</h2> <p>Standard big bang cosmology predicts a cosmic neutrino background at given temperature today. Neutrino velocities are expected to be non-relativistic today.  We had earlier made predictions for the dynamical friction of haloes, as a result of the neutrino wakes, moving in a stream of neutrinos. In this talk, I will quantify how we extract this signal from a neutrino+dark matter simulation.</p> <p><strong>Affiliation:</strong> University of ݮƵ and Perimeter Institute</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Morgan Mastrovich</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/morgan-mastrovich" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="morgan" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Spectral manipulation of entangled photons with an upconversion time lens</h2> <p>Sources of entangled photons with precisely controlled properties are necessary for effective and efficient photonic quantum communication, computation, and metrology. The nonlinear process of spontaneous parametric downconversion (SPDC) provides a reliable source of energy-time entangled photons, but most SPDC sources tend to produce photons with frequency anti-correlations. Photon pairs with positively correlated spectra may be useful for quantum-enhanced clock synchronization [1], but control over the correlations after state generation has not yet been demonstrated. Spectral control over a photon after it has been created is highly desirable for ultrafast manipulation and state engineering, especially at wavelengths where materials with suitable phasematching do not exist [2, 3].</p> <p>A time lens operates on the temporal and frequency distributions of light in the same way that a conventional glass lens manipulates the spatial and momentum profiles of a beam [4]. Chromatic dispersion, or chirping, spreads the temporal profile of a beam such that each temporal slice of the beam has a distinct central frequency. One promising implementation of a time lens combines a single photon with a strong classical escort pulse using sum frequency generation (SFG), leaving an imprint of the spectral dispersion of the escort on the upconverted photon. Combined with an appropriate amount of dispersion on both the single photon and the escort beam, this time lens can stretch, compress, and invert the spectral and temporal waveforms of the photon. Using this temporal imaging technique to invert the spectral waveform of one photon in an entangled pair will reverse the spectral correlations between the entangled photons.<br />    <br /> In this work, detailed in [5], we demonstrate control of a twin-photon joint spectral intensity through the use of an upconversion time lens on the ultrafast timescale. We measure a statistical correlation of −0.97 in the joint spectral intensity of an energy-time-entangled pair produced with SPDC, indicating strong frequency anti- correlations consistent with energy conservation found in traditional bulk SPDC sources. We apply a temporal imaging technique to the signal photon of the downconverted pair, and observe a strong positive statistical correlation of +0.86 between the untouched idler photon and the upconverted signal photon. We also show that the central frequency of the upconverted joint spectrum can be manipulated by introducing a time delay in the escort pulse. The technique presented is free of intense broadband noise at the target wavelengths. Control of the correlation of joint spectra as demonstrated in this work may be directly useful for shaping the spectra of entangled pairs for long-distance communications [2] and quantum-enhanced metrology [1] and, more generally, to mold the time-frequency distributions of entangled photons for experiments both fundamental and practical.</p> <p><strong>References:</strong><br /> [1] V. Giovannetti, S. Lloyd, L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417–419 (2001).<br /> [2] W. P. Grice, A. B. U’Ren, I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).</p> <p><strong>Affiliation:</strong> Institute for Quantum Computing</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Jennifer Reid</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/jennifer-reid" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="jennifer" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Modelling the peak thermal conductivity of Dysprosium Titanate</h2> <p>Dysprosium titanate (Dy2Ti2O7 or DTO) is a key candidate for studying the thermal transport of magnetic monopoles due to its geometrically frustrated lattice. However, monopole thermal transport results differ depending on the peak thermal conductivity of the material. The height of this peak gives qualitative information about the number of lattice imperfections in each sample which can be quantified with modelling techniques. In this talk, I will discuss using the Callaway model of thermal conductivity to analyze the peak thermal conductivity of differing DTO samples.</p> <p><strong>Affiliation:</strong> University of ݮƵ</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Carolyn Cadogan</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/carolyn-cadogan" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="carolyn" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>The Optical Properties of Silicon Nanoparticles</h2> <p>Though silicon (Si) is a non-toxic and abundant semiconductor used extensively in the electronic and photovoltaic industries, the poor light emission of this material has stifled its use in optical and optoelectronic devices. The ability to use Si in such applications has many advantages that include low fabrication cost and high compatibility with existing technology. Therefore, there is a need to develop a Si-based light source by improving the light emission of Si, in order for Si to be used in such devices. In recent years, Si nanoparticles (Si-NPs) have been shown to be a promising candidate for developing such a light source.</p> <p>The reason a Si-NP light emitting diode (LED) has yet to be produced is that although Si-NPs have greater light emission than bulk Si, the light produced by these NPs is still too low in intensity to be used in a commercial device. It is for this reason that we have explored various approaches for improving the luminescence of Si-NPs and for studying the mechanisms responsible for their luminescence. One such approach is to dope the matrix in which the Si-NPs are housed. We have observed an increase in the luminescence of Si-NPs embedded in silicon nitride when aluminum dopants are introduced via ion implantation and that this increase in internsity is dependent on dopant concentration.</p> <p><strong>Affiliation:</strong> Western University</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h3>Emma McKay</h3> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/emma-mckay" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="emma" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>When will a qubit's interaction show what shape it is inside?</h2> <p>Superconducting qubits operate via interaction with the electromagnetic field in highly tunable scenarios, making them ideal for experimental explorations of the light-matter interaction. The qubits are subject to a natural but uncharacterized ultraviolet cutoff---materials stop behaving as superconductors at high frequencies. The long-range nature of the interaction can be modeled as a spatial smearing. In a weak coupling regime, it is reasonable to assume a sharp ultraviolet cutoff and pointlike qubit.</p> <p>As the strength of coupling increases, this assumption needs to be assessed.  We use the Unruh-DeWitt model in 1+1D to investigate the effect of the cutoff and smearing function on qubit dynamics using an experimentally realizable non-adiabatic switching function. We find that the cutoff is the primary contributor to the effective shape of the qubit and that, in an ideal scenario, the wrong choice of cutoff introduces significant noise.</p> <p>This work was done in collaboration with Adrian Lupascu and Eduardo Martin-Martinez.</p> <p><strong>Affiliation:</strong>  Institute for Quantum Computing</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details></div> </div> </div> </section><section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="posters" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <h2 class="block-title">Student poster session</h2> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="enlarged">Student poster sessions are scheduled Wednesday, July 26 from 6 to 7:30 p.m. </p> <ul><li> <p><a href="#amina">Amina Berrada, University of Ottawa</a></p> </li> <li> <p><a href="#simon">Simon Daley, Institute for Quantum Computing</a></p> </li> <li> <p><a href="#florence">Florence Grenapin, University of Ottawa</a></p> </li> <li> <p><a href="#aimee">Aimee Gunther, Institute for Quantum Computing</a> </p> </li> <li> <p><a href="#olivera">Olivera Kralj, University of ݮƵ</a></p> </li> <li> <p><a href="#ardalan">Ardalan Mahmoodi, University of Toronto</a></p> </li> <li> <p><a href="#morgan">Morgan Mastrovich, University of ݮƵ, Department of Physics and Astronomy and Institute for Quantum Computing</a></p> </li> <li> <p><a href="#chelsea">Chelsea-Lea Randall, University of Saskatchewan</a></p> </li> <li> <p><a href="#laura">Laura Sberna, Perimeter Institute</a></p> </li> <li> <p><a href="#melissa">Melissa Schmitz, Le Moyne College</a></p> </li> <li> <p><a href="#nigar">Nigar Sultana, Institute for Quantum Computing </a></p> </li> <li> <p><a href="#bingyao">Bingyao Tan, University of ݮƵ</a></p> </li> <li> <p><a href="#emily">Emily Tyhurst, University of British Columbia</a></p> </li> <li> <p><a href="#edith">Edith Yeung, Western University</a><br />  </p> </li> </ul></div> </div> </div> <div class="block block-uw-custom-blocks block-uw-cbl-expand-collapse"> <div id="68a7d58971285" class="uw-exp-col"> <div class="uw-exp-col__controls"> <button class="uw-exp-col__button uw-exp-col__button--controls" data-type="expand-all">Expand All</button> <button class="uw-exp-col__button uw-exp-col__button--controls" data-type="collapse-all">Collapse All</button> </div> <details class="uw-details"><summary class="details__summary"><h2>Amina Berrada</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/amina-berrada" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="amina" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>A “two-peak” pattern observed in the high-frequency neural oscillations of a weakly electric fish</h2> <p>Authors: Amina Berrada, Courtney Tower, John Lewis, Béla Joós</p> <p>Weakly electric fish produce a high-frequency oscillating electric field that allows them to navigate and communicate in the dark. Their clock-like signal is the least variable of any known biological oscillator, but the mechanisms underlying this extreme precision are not clear. We recorded electric discharges in Apteronotus albifrons (blackghost knifefish) at 50MHz sampling frequency to characterize temporal precision under different conditions, such as a varying temperature. We used three different approaches to analyse cycle-to-cycle variability: the first involved a simple signal threshold; the second was based on the signal envelope using Hilbert transforms; and the third, which was the most accurate, used the phase of the Hilbert transform. One important observation was that under certain conditions, the histogram of cycle periods exhibits two peaks. We hypothesize that the electric organs on the left and right sides of the fish are independent oscillators that normally are synchronized but can also operate separately under some conditions. We will discuss the implications of our results on the neural generation of high-frequency signals and the insight that it provides for brain oscillations in general.</p> <p><strong>Affiliation:</strong> University of Ottawa</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Simon Daley</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/simon-daley" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="simon" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Bright quantum dot source of entangled photon pairs</h2> <p>Bright, deterministic sources of entangled photon pairs are a crucial component for photonic implementations of quantum communication and quantum information processing, as well as a valuable resource for quantum optical experiments and quantum sensing technologies. To date, no sources have been demonstrated which combine high entanglement fidelity and high photon pair efficiency, which are key requirements of deterministic sources.</p> <p>This poster presents a promising new solid-state nanostructure source which consists of a quantum dot that generates a single very high fidelity polarization-entangled photon pair in response to a laser excitation pulse with a very high probability, and a nanowire structure which directs both emitted photons towards collection optics by allowing the spatial mode to leak adiabatically from the wire’s tapered tip. The device has a photon pair efficiency two orders of magnitude higher than a bare quantum dot, and has entanglement fidelities of nearly 90%.</p> <p>Numerical simulations suggest that implementing a handful of modifications to the device and experimental setup could yield near unity (>95%) entanglement fidelity and photon pair efficiency in the near future. Such a source would make practical quantum repeaters and other long-distance quantum communication schemes attainable, and would expand the scale and quality of experiments that can be conducted with entangled photons by increasing the source brightness by several orders of magnitude relative to the currently used spontaneous parametric down-conversion sources. It would also be possible to modify the device to allow on-chip integration and electrical excitation, both of which would be very useful for scalable linear optical quantum computing.</p> <p><strong>Affiliation:</strong> Institute for Quantum Computing</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Florence Grenapin</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/florence-grenapin" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="florence" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Electrochemical etching of sharp tips for scanning probe microscopy application</h2> <p>A wide variety of tip shapes are needed for different scanning probe microscopy applications, and although there are established chemical procedures to produce tips, procedures to precisely control the shape of the resulting tips are still lacking. We present our method of shaping W tips used for scanning tunneling microscopy imaging, using an electrochemical etching process. Aiming to produce tips of certain desired shapes, we investigate the effects of different parameters of the electrochemical etching process on the geometry of the resulting tip.<img alt="<--break->" height="1" src="/women-in-physics-canada-2017/profiles/uw_base_profile/modules/contrib/wysiwyg/plugins/break/images/spacer.gif" width="1" /></p> <p><strong>Affiliation:</strong> University of Ottawa</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Aimee Gunther</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/aimee-gunther" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="aimee" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Spatial and spectral analysis of type-0 downconversion in bulk PPLN</h2> <p>Collinear Type-0 (eee) interaction of spontaneous parametric down-conversion (SPDC) has found much use in both bulk and waveguide entangled photon generation applications. In particular, Type-0 interactions from cw-pumped bulk periodically poled media has been useful in demonstrating energy-time entanglement large spectral bandwidth emission. In this work, the spatial and spectral properties of the Type-0 SPDC interaction in periodically poled 5% magnesium oxide-doped lithium niobate (PPLN) are simulated and experimentally verified over a range of phasematching temperatures showing a strong noncollinear emission outside of the typical collinear configuration. This has be previously characterized for Type-0 interactions in periodically poled potassium titanyl phosphate, but never for PPLN.</p> <p><strong>Affiliation:</strong> Institute for Quantum Computing </p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Olivera Kralj</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/olivera-kralj" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="olivera" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Evaluation of corneal thickness in Keratoconic subjects using sub-micrometer axial resolution SD-OCT </h2> <p>The cornea plays an important role in focusing light and protecting the eye from harmful matter. Degenerative corneal conditions or habits such as frequent rubbing of the eye can cause damage to these layers and severely affect one's vision. Keratoconus (KC) is a progressive non-inflammatory disease that results in the thinning of the cornea, causing it to weaken and steepen into an abnormal conical shape leading to many vision problems, the most common being blurred vision. This degenerative disease can be diagnosed from adolescence (16 years) to middle age (30 to 40 years).</p> <p>In this study a high resolution spectral domain optical coherence tomography (SD-OCT) system was developed to image healthy and keratoconic corneas in-vivo at a cellular level. Images will then be used to compare the structure of healthy and keratoconic corneas and make observations on the changes brought about by the disease. The goal is to develop a system that would allow for early diagnosis of KC which has become essential in preventing the further progression of this disease through various treatment modalities such as contact lenses or surgery.</p> <p><strong>Affiliation:</strong> University of ݮƵ</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Ardalan Mahmoodi</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/ardalan-mahmoodi" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="ardalan" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>An ab initio study on electronic structure of gallium nitride in cubic lattices</h2> <p>In this paper we have studied theoretically the possibility of existence the rock salt ( NaCl) phase of gallium nitride and have compared it with zinc-blende. Calculations have been done in the framework of density functional theory (DFT) and Local Density Approximation ( LDA ) for exchange correlation energy, using Quantum-SPRESSO package. We have obtained equilibrium lattice constant, bulk modulus, band structures, and density of states for GaN in zinc blend and NaCl phases. The results for zincblende phase are in good agreement with experiment. Furthermore, the calculations for NaCl phase show a narrow indirect band gap of 0.6 eV for GaN.</p> <p><strong>Affiliation:</strong> University of Toronto</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Morgan Mastrovich</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/morgan-mastrovich-0" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="morgan" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Spectral manipulation of entangled photons with an upconversion time lens</h2> <p>A time lens, which can be used to reshape the spectral and temporal properties of light, requires ultrafast manipulation of optical signals and presents a significant challenge for single-photon application. In this work, we construct a time lens based on dispersion and sum-frequency generation to spectrally engineer single photons from an entangled pair. The strong frequency anti-correlations between photons produced from spontaneous parametric downconversion are converted to positive correlations after the time lens, consistent with a negative-magnification system. The temporal imaging of single photons enables new techniques for time-frequency quantum state engineering.</p> <p><strong>Affiliation:</strong> University of ݮƵ, Department of Physics and Astronomy and Institute for Quantum Computing</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Chelsea-Lea Randall</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/chelsea-lea-randall" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="chelsea" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>DY Pegasi</h2> <p>Using photos taken of the variable star DY Pegasi, the light curves were analyzed to determine features of the star. It was concluded that DY Pegasi is 333.3 light-years away and varies in surface temperature from 7150 K to 8390 K.</p> <p><strong>Affiliation:</strong> University of Saskatchewan</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Laura Sberna</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/laura-sberna" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="laura" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Quantum Tunneling with a Lorentzian Path Integral</h2> <p>We describe the tunnelling of a quantum mechanical particle with a Lorentzian (real-time) path integral. The analysis is made concrete by application to the inverted harmonic oscillator potential, where the path integral is known exactly. We apply Picard-Lefschetz theory to the time integral of the Feynmann propagator at fixed energy, and show that the Euclidean integration contour is obtained as a Lefschetz thimble, or a sum of them, in a suitable limit.</p> <p>Picard-Lefschetz theory is used to make the integral manifestly convergent and is also essential for the saddle point or semi- classical approximation. The very simple example of the inverted harmonic oscillator presents many of the interesting feature found when dealing with instantons, such as the Stokes phenomenon and multiple relevant complex saddles.</p> <p><strong>Affiliation:</strong> Perimeter Institute</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Melissa Schmitz</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/melissa-schmitz" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="melissa" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Synthesis and Characterization of Lithium Carboxylates for Use in Liquid Organic Scintillator</h2> <p>Fast neutron spectroscopy can be performed using lithium-loaded organic liquid scintillators. Typical loading involves emulsifying an aqueous lithium salt into a scintillator cocktail. A proposed improvement on this approach dissolves long-chain lithium carboxylate salts directly into an organic scintillator. The synthesis and characterization of lithium dodecanoate, lithium octanoate, and lithium hexanoate in commercial scintillator cocktails Ultima Gold AB and a custom Eljen scintillator in terms of solubility and light transmittance properties is discussed.</p> <p><strong>Affiliation:</strong> Le Moyne College</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Nigar Sultana</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/nigar-sultana" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="nigar" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Detector module for cubesat to investigate lower orbit radiation damage mitigation</h2> <p>We report the design and implementation of a detector module (DM) for cubesat to execute periodic lower earth orbit laser and thermal annealing. We will study the effeciency of these methods to mitigate the in-orbit radiation damage. The DM has the form factor of a cubesat and contains four avalanche photo diodes (APDs)  - two SLiKs and two C30902SHs from Excelitas. Thermal annealing can be performed by controlling the detectors’ integrated thermoelectric coolers (TECs). A TEC driver controls the heating and cooling temperature of the TECs.</p> <p>To execute laser annealing, the APDs will be illuminated by a high power laser through the fiber connectors of the APDs. An embedded processor (Cypress PSoC-3) controls the functionality of the DM which is interfaced by a PC/104 connector which also supplies the essential power supply to the DM. The DM, mass ~120 g and consumes ~1.2 W of power, and is contained in a volume of only 95 mm х 95 mm х 38 mm. This experiment is expected to have prospective contributions to the satellite quantum communication, especially on quantum key  distribution.</p> <p><strong>Affiliation:</strong> Institute for Quantum Computing</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Bingyao Tan</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/bingyao-tan" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="bingyao" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Retinal structural, functional and blood perfusion change in a rat model of glaucoma</h2> <p>Glaucoma causes progressive damage to the retinal morphology, blood perfusion and the retinal ganglion cells functional response, and eventually leads to blindness. This study explores the correlation between transient changes in the retinal blood flow and the functional response of the retina to a flash stimulus, associated with acute elevation of the intraocular pressure (IOP), as measured with a combined optical coherence tomography (OCT) and electroretinography (ERG) system. Results show non-linear decrease of the retinal blood flow and the magnitude of the ERG a- and b-waves with progressive increase of the IOP from baseline (10 mmHg) to 80 mmHg.</p> <p><strong>Affiliation:</strong> University of ݮƵ</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Emily Tyhurst</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/emily-tyhurst" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="emily" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Separating costs of state-independent and state-dependent contextuality in Mermin's Square</h2> <p>Connections between negativity in quasiprobability distributions and quantum contextuality as a resource for computation are well-established in local Hilbert space dimension greater than two. However, for qubits the separation between state-independent and state-dependant contextuality complicates matters.  Through the canonical example of Mermin's square, I present a simple contextual hidden variable model that allows for a classical simulation of the system. The simulation method deliberately separates costs due to state-independent contextuality, provided by two different hidden variable models; and the costs due to state-dependent contextuality, provided by a quasiprobability distribution over the hidden variable models.</p> <p><strong>Affiliation:</strong> University of British Columbia</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details><details class="uw-details"><summary class="details__summary"><h2>Edith Yeung</h2> </summary><div class="details__content"> <div role="article" about="/institute-for-quantum-computing/ec-group/edith-yeung" class="node node--type-uw-ct-expand-collapse-group node--promoted node--view-mode-full uw-node"> <div class="uw-node__grid"> <article class="uw-node__node"><div class="node__content"> <div class="uw-node__without-media"> <article class="card card__node card__node--expand-collapse-group"><div class="card__header uw-node__without-media"> </div> <div class="card__body"> <div class="card__content"> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div id="edith" class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <h2>Incorporation of radical polymers in perovskite solar cells as hole transport materials</h2> <p>The damaging effects of greenhouse gasses and depleting availability of fossil fuels have led scientists to turn their gaze towards the research of alternative clean, sustainable forms of energy. Sunlight is a promising form of clean energy source that will not run out within the span of human history. Although silicon solar cells are still dominating the market of photovoltaic devices, new thin-film solar cell solutions are sought in order to limit costs at increasing photoconversion efficiency. Perovskite thin film solar cells (PSCs), in particular, have gained significant attention in recent years due to their rapidly increasing solar energy efficiency conversion. PSCs are capable of harvesting the sun’s light and converting it into usable energy in a similar fashion to that of plant leaves.</p> <p>Although the overall fabrication of PSCs is inexpensive, the some of the materials required as hole-transport layers are quite costly. Due to their specific electron energy levels, Oxoverdazyl radical polymers with tunable charge states are suitable to be used in perovskite solar cells. These polyradicals are stable towards air exposure and temperature, and they can be reliably synthesized. One of their unique properties, include the ability of oxoverdazyl polyradicals to change their electrical conductivity depending on the voltage applied, making it useful in the assistance of charge transfer. The aim of this project is to incorporate this radical polymer into the standard PSC to assist in the redox reaction necessary for the function of the cell.</p> <p><strong>Affiliation:</strong> Western University</p> </div> </div> </div> </div> </section></div> </div> </article></div> </div> </article></div> </div> </div> </details></div> </div> </div> </section> Tue, 19 Nov 2024 19:38:35 +0000 Takudzwa Chipo Valerie Mudzongo 3566 at /institute-for-quantum-computing Quantum Innovators in science and engineering 2017 /institute-for-quantum-computing/events/quantum-innovators-science-and-engineering-2017 <span class="field field--name-title field--type-string field--label-hidden">Quantum Innovators in science and engineering 2017</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Tue, 10/15/2024 - 07:14</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>The Quantum Innovators in science and engineering workshop brings together the most promising young researchers in quantum physics and engineering. Guests are invited for a four-day conference aimed at exploring the frontier of our field.</p> <p>The workshop is held at the <a href="/institute-for-quantum-computing/Home">Institute for Quantum Computing</a> (IQC) at the <a href="/">University of ݮƵ</a>.</p> <ul><li>Attendees are postdoctoral fellows.</li> <li>Attendees are experimentalists or theorist of experiments in quantum physics and engineering.</li> <li>All attendees will give a talk on their research.</li> <li>There is no fee for attendance, accommodations or food. Travel expenses will be covered through the <a href="/transformative-quantum-technologies/">Transformative Quantum Technologies</a> research initiative thanks in part to funding through the <a href="http://www.cfref-apogee.gc.ca/">Canada First Research Excellence Fund</a> (CFREF).</li> </ul><p>If you have any questions about the event, please email <a href="mailto:qinnovators@uwaterloo.ca">qinnovators@uwaterloo.ca</a>.</p> </div> </div> </div> </div> </section> Tue, 15 Oct 2024 11:14:05 +0000 Takudzwa Chipo Valerie Mudzongo 3493 at /institute-for-quantum-computing Ray's 60th Celebration /institute-for-quantum-computing/events/rays-60th-celebration-2020 <span class="field field--name-title field--type-string field--label-hidden">Ray's 60th Celebration</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Tue, 10/15/2024 - 07:06</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p>In July 2020, Raymond Laflamme will turn 60. To celebrate this milestone, an anniversary conference is in order. Ray’s main wish is to hear from his former students and postdocs. We therefore decided to invite exclusively people who, at one point or another in their career, were under the mentorship of this accomplished scientist.</p> <p>This reunion conference is meant the be low-key and relaxed –a time to hear from and catch up with old friends and colleagues while having some fun, good food and perhaps challenge Ray to a good old game of ball hockey!</p> <p>We would like an update from as many of you as possible. Let us know if you would like to give a five or twenty-five minute presentation, or just catch up with people during social time. Your presentation can, but doesn’t have to be an academic talk. It can be an update on your career, what you work on, or something else that you want to share with the group.  Ideally, your presentation would link back to Ray. Presentation spots are limited.</p> <p><strong>Date:</strong> July 24-26 (all day, finishing around 5pm on Sunday)</p> <p><strong>Location:</strong> Institute for Quantum Computing, University of ݮƵ</p> <p><strong>Organizing Committee:</strong><br /> Aharon Brodutch, University of Toronto<br /> Martin Laforest, ISARA Corporation<br /> Shayan Majidy, Institute for Quantum Computing<br /> Daniel Park, Korea Advanced Institute of Science & Technology</p> </div> </div> </div> </div> </section> Tue, 15 Oct 2024 11:06:38 +0000 Takudzwa Chipo Valerie Mudzongo 3492 at /institute-for-quantum-computing Raymond Laflamme's 60th Birthday Conference /institute-for-quantum-computing/events/raymond-laflammes-60th-birthday-conference <span class="field field--name-title field--type-string field--label-hidden">Raymond Laflamme's 60th Birthday Conference</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/tcvmudzo" typeof="schema:Person" property="schema:name" datatype="" content="tcvmudzo" xml:lang="">Takudzwa Chipo…</span></span> <span class="field field--name-created field--type-created field--label-hidden">Tue, 10/15/2024 - 06:59</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p><img alt="Raymond Laflammes 60th birthday conference" src="/institute-for-quantum-computing/sites/default/files/styles/large/public/uploads/images/raymond-conference.png?itok=SbPdEcG8" /></p> <p><strong>July 19 – 21, 2023</strong><br /> Institute for Quantum Computing<br /> University of ݮƵ</p> <p>This conference marking Raymond Laflamme's 60th birthday is to celebrate Raymond and his many contributions to quantum computing. As per Raymond's request, the conference will consist solely of his former students and postdocs. The conference is divided into three days of scientific talks and networking.</p> <h2><strong>Schedule</strong></h2> <p><strong>Lazaridis QNC 0101</strong></p> <table><thead><tr><th><em>Time</em></th> <th><em>Wednesday, July 19</em></th> <th><em>Thursday, July 20</em></th> <th><em>Friday, July 21</em></th> </tr></thead><tbody><tr><td>9:00 am - 9:30 am</td> <td> <p>Breakfast, Registration, and Rapid-Antigen Tests</p> </td> <td>Breakfast</td> <td>Breakfast</td> </tr><tr><td>9:30 am - 10:45 am</td> <td>Welcome and Session 1a</td> <td>Session 2a</td> <td>Session 3a</td> </tr><tr><td><em>10:45 am - 11:15 am</em></td> <td><em>Coffee Break</em></td> <td><em>Coffee Break</em></td> <td><em>Coffee Break</em></td> </tr><tr><td>11:15 am - 12:30 pm</td> <td>Session 1b</td> <td>Session 2b</td> <td>Session 3b</td> </tr><tr><td>12:30 pm - 1:50 pm</td> <td>Lunch</td> <td>Lunch</td> <td>Lunch</td> </tr><tr><td>1:50 pm - 3:05 pm</td> <td>Session 1c</td> <td>Session 2c</td> <td>Session 3c</td> </tr><tr><td>3:05 pm - 5:20 pm</td> <td>Networking Activity 1 at RAC (<em>RAC tours and floor hockey</em>)</td> <td>Networking Activity 2 (<em>Huron Natural Area</em>)</td> <td>Networking Activity 3 (<em>Brewery Tour</em>)</td> </tr><tr><td>5:20 pm - 6:00 pm</td> <td>Break to freshen up (<em>Delta Hotel</em>)</td> <td>Break to freshen up (<em>Delta Hotel</em>)</td> <td>Networking Activity 3 (<em>Brewery Tour</em>)</td> </tr><tr><td>6:00 pm - 8:30 pm</td> <td>Dinner (<em>Beer Town)</em></td> <td>Dinner (<em>Perimeter Institute Bistro</em>)</td> <td>Dinner (<em>Huether Hotel</em>)</td> </tr></tbody></table><h2>Scientific Schedule</h2> <table><tbody><tr><th>Time</th> <th>July 19</th> <th>July 20</th> <th>July 21</th> </tr><tr><td>9:30 - 9:55</td> <td><strong>Welcome & Logistics</strong><br /><em>Shayan Majidy</em></td> <td><strong>Quantum Computing Exploration at Yonsei</strong><br /><em>Daniel Kyungdeock Park</em></td> <td><strong>Multi-core Quantum Computation</strong><br /><em>Aharon Brodutch</em></td> </tr><tr><td>9:55 - 10:20</td> <td><strong>Semiconductor Quantum Devices</strong><br /><em>Jonathan Baugh</em></td> <td><strong>Advancements in Alternative Approaches to Quantum Machine Learning</strong><br /><em>Casey Myers</em></td> <td> <p><strong>Stochastic Quantum Channels</strong><br /><em>Matthew A. Graydon</em></p> </td> </tr><tr><td>10:20 - 10:45</td> <td><strong>Unitary and Dissipative Simulation of Diffusion Processes</strong><br /><em>Pooya Ronagh</em></td> <td><strong>Density Matrix Exponentiation and its Applications</strong><br /><em>Dawei Lu</em></td> <td><strong>Activation of Strong Local Passive States with Quantum Information</strong><br /><em>Nayeli A. Rodriguez Briones</em></td> </tr><tr><td colspan="4"> <strong>Coffee Break</strong></td> </tr><tr><td>11:15 - 11:40</td> <td> <p><strong>Bringing Quantum to the Museum in a Big Way</strong><br /><em>Martin LaForest</em></p> </td> <td><strong>Noncommuting Charges in Quantum Thermodynamics and Beyond</strong><br /><em>Shayan Majidy</em></td> <td><strong>Fast Quantum State Tomography in the Nitrogen Vacancy Center of Diamond</strong><br /><em>Jingfu Zhang</em></td> </tr><tr><td>11:40 - 12:05</td> <td><strong>Beyond Academia, Data Science in Industry</strong><br /><em>Paulina Corona Ugalde</em></td> <td><strong>Quantum Computation Using Photonic Quantum Walks</strong><br /><em>Chandrashekar C. Madaiah</em></td> <td><strong>Simple Master Equations for Describing Driven Systems Subject to Highly Non-Markovian Noise</strong><br /><em>Peter Groszkowski</em></td> </tr><tr><td>12:05 - 12:30</td> <td><strong>Inclusion as a Principle</strong><br /><em>David Rideout</em></td> <td><strong>Photonic Quantum Science and Technologies</strong><br /><em>Urbasi Sinha</em></td> <td><strong>Universal Computing Models: The Quantum Landscape</strong><br /><em>Dongsheng Wang</em></td> </tr><tr><td colspan="4"><strong>Lunch</strong></td> </tr><tr><td>1:50 - 2:15</td> <td><strong>One-Bit Addition with the Smallest Interesting Colour Code</strong><br /><em>Ben Criger</em></td> <td><strong>Building a Quantum Start-Up</strong><br /><em>Chris Erven</em></td> <td><strong>Using Quantum Computers to Solve Industry Problems</strong><br /><em>Alexandre Martins de Souza</em></td> </tr><tr><td>2:15 - 2:40</td> <td><strong>Speed Limits for Fault-tolerant Quantum Computation</strong><br /><em>Mike Vasmer</em></td> <td> <p><strong>Noisy Measurements in Quantum Error Correction and How to Handle Them</strong><br /> Stefanie Beale</p> </td> <td><strong>IQC Hospital for Advanced Personalized Quantum Cancer Treatment</strong><br /><em>Robabeh Rahimi</em></td> </tr><tr><td>2:40 - 3:05</td> <td><strong>Raymond Laflamme, Complexity Theorist</strong><br /><em>Scott Aaronson</em></td> <td><strong>Logical Gates in Quantum Error Correction</strong><br /><em>Tomas Jochym-O'Connor</em></td> <td><strong>Closing Remarks</strong><br /><em>Raymond Laflamme</em></td> </tr></tbody></table><h2>Addresses</h2> <table width="500"><tbody><tr><td> <p><strong>Institute for Quantum Computing, University of ݮƵ</strong></p> <p>200 University Ave West, ݮƵ</p> <p>Lazaridis Quantum-Nano Center (QNC)</p> <p><a href="/map/">University of ݮƵ map</a></p> </td> <td> <p><strong>Delta Hotel ݮƵ</strong></p> <p>110 Erb Street West,<br /> ݮƵ</p> </td> <td> <p><strong>Perimeter Institute </strong></p> <p>31 Caroline Street,<br /> ݮƵ</p> </td> <td> <p><strong>Huether Hotel</strong></p> <p>59 King Street North,<br /> ݮƵ</p> </td> <td> <p><strong>Beer Town</strong></p> <p>75 King St S ݮƵ</p> </td> </tr></tbody></table><p>If you have any questions, do not hesitate to contact Shayan Majidy (<a href="mailto:smajidy@uwaterloo.ca">smajidy@uwaterloo.ca</a>)</p> <h2>Sponsored by:</h2> <p><img alt="Quantum industry partners include Xanadu, Quantinuum and IONQ" height="209" src="/institute-for-quantum-computing/sites/default/files/uploads/images/d.png" width="1200" /></p> </div> </div> </div> </div> </section> Tue, 15 Oct 2024 10:59:58 +0000 Takudzwa Chipo Valerie Mudzongo 3491 at /institute-for-quantum-computing Quantum Connections 2024: Quantum Perspectives /institute-for-quantum-computing/events/quantum-connections-2024-quantum-perspectives <span class="field field--name-title field--type-string field--label-hidden">Quantum Connections 2024: Quantum Perspectives</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/institute-for-quantum-computing/users/eakleisa" typeof="schema:Person" property="schema:name" datatype="" xml:lang="">Elizabeth Kleisath</span></span> <span class="field field--name-created field--type-created field--label-hidden">Thu, 04/11/2024 - 16:41</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="block block-uw-custom-blocks block-uw-cbl-image"> <div class="uw-image"> <figure class="uw-image__figure uw-image__full-width"><picture class="uw-picture"><!--[if IE 9]><video style="display: none;"><![endif]--><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_x_large/public/uploads/images/qc_web-banner.png?itok=ZeI54nf0 1x" media="all and (min-width: 63.19em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_large/public/uploads/images/qc_web-banner.png?itok=QOl3nlQn 1x" media="all and (min-width: 49.81em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_medium/public/uploads/images/qc_web-banner.png?itok=K2BQtuuf 1x" media="all and (min-width: 30em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_small/public/uploads/images/qc_web-banner.png?itok=ttg2BZB8 1x" media="all and (min-width: 25em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_media_x_small/public/uploads/images/qc_web-banner.png?itok=Na-LOUua 1x" media="all and (min-width: 15em)" type="image/png"></source><source srcset="/institute-for-quantum-computing/sites/default/files/styles/uw_is_portrait/public/uploads/images/qc_web-banner.png?itok=So54K7vs 1x" media="all and (min-width: 1em)" type="image/png"></source><!--[if IE 9]></video><![endif]--><img class="uw-picture__fallback" src="/institute-for-quantum-computing/sites/default/files/styles/large/public/uploads/images/qc_web-banner.png?itok=IBRJghuI" alt="Banner for Quantum Connections Conference at IQC" /></picture></figure></div> </div> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p><a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="9f379256-ee23-403b-a4db-6296c7134911" href="/institute-for-quantum-computing/events/conferences/quantum-connections/2024">Quantum Connections</a> is an annual networking conference hosted by the Institute for Quantum Computing (IQC) at the University of ݮƵ on May 1-2, 2024.</p> <p>The conference aims to encourage the thriving quantum ecosystem in Canada by connecting professionals from government, industry and academic sectors in an innovative and collaborative environment.</p> <p>Quantum Connections 2024 will consider the theme Quantum Perspectives: the impacts and outlooks driving our future. Panel discussion topics include Quantum + Business, Quantum + Law and Policy, Quantum + Research Security, Quantum + Impact, and Quantum + The Near Future. See the full schedule and speaker bios on the <a data-entity-substitution="canonical" data-entity-type="node" data-entity-uuid="223de258-846d-4131-8bec-c3c8a670106f" href="/institute-for-quantum-computing/events/conferences/quantum-connections/2024/program">Quantum Connections Programming page</a>.</p> <p>Keynote speakers:</p> <p><strong>Dr. Aleksander Kubica</strong>: Quantum + Chess</p> <p><strong>Calista Besseling</strong>: Quantum + Beyond</p> </div> </div> </div> <div class="block block-layout-builder block-inline-blockuw-cbl-call-to-action"> <div class="uw-cta "> <div class="uw-cta__center-wrapper"> <aside class="uw-cta__aside org-default"><a href="/institute-for-quantum-computing/quantum-connections-conference/conference-programming" class="uw-cta__link"> <div class="uw-cta__wrapper"> <div class="call-to-action-theme-org-default"> <div class="uw-cta__text uw-cta__text--big">See the Schedule</div> </div> </div> </a> </aside></div> </div> </div> </div> </section> Thu, 11 Apr 2024 20:41:53 +0000 Elizabeth Kleisath 3268 at /institute-for-quantum-computing