Kang, K.-K. ., Hoekstra, M. ., Foroutan, M. ., Chegoonian, A. ., Zolfaghari, K. ., & Duguay, C. . (2019). Operating procedures and calibration of a hyperspectral sensor onboard a remotely piloted aircraft system for water and agriculture monitoring. Yokohama, Japan: IEEE. (Original work published 2019)
Reference author: C.R. Duguay
First name
C.R.
Last name
Duguay
Du, J. ., Watts, J. D., Jiang, L. ., Lu, H. ., Cheng, X. ., Duguay, C. ., Farina, M. ., Qiu, Y. ., Kim, Y. ., Kimball, J. ., & Tarolli, P. . (2019). Remote Sensing of Environmental Changes in Cold Regions: Methods, Achievements and Challenges. Remote Sensing, 11.
Carrea, L. ., etaux, J.-F. C., Liu, X. ., Wu, Y. ., Berge-Nguyen, M. ., Calmettes, B. ., Duguay, C. ., Merchant, C. ., Selmes, N. ., Simis, S. ., Warren, M. ., esou, H. Y., Müller, D. ., Jiang, D. ., & Albergel, C. . (2023). Multivariate world-wide lake physical variable timeseries for climate studies. Scientific Data, 10, 1-28. Retrieved from https://doi.org/10.1038/s41597-022-01889-z (Original work published 2023)
Antonova, S. ., Duguay, C. ., Kaab, A. ., Heim, B. ., Langer, M. ., Westermann, S. ., & Boike, J. . (2016). Monitoring ice phenology and bedfast ice in lakes of the Lena River Delta using TerraSAR-X backscatter and coherence time series. Remote Sensing, 8. Retrieved from http://www.mdpi.com/2072-4292/8/11/903
Zolfaghari, K. ., Pahlevan, N. ., Binding, C. ., Gurlin, D. ., Simis, S. ., u, R. V., Li, L. ., Crawford, C. ., VanderWoude, A. ., Errera, R. ., Zastepa, A. ., & Duguay, C. . (2022). Impact of spectral resolution on quantifying cyanobacteria in lakes and reservoirs: A machine-learning assessment. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-20. https://doi.org/10.1109/TGRS.2021.3114635 (Original work published 2022)
Chegoonian, A. ., Zolfaghari, K. ., Leavitt, P. ., Baulch, H. ., & Duguay, C. . (2022). Improvement of field fluorometry estimates of chlorophyll-a concentration in a cyanobacteria-rich eutrophic lake. Limnology and Oceanography: Methods, 1-17. Retrieved from https://doi.org/10.1002/lom3.10480 (Original work published 2022)
Zolfaghari, K. ., Pahlevan, N. ., Simis, S. ., O\textquoterightShea, R. ., & Duguay, C. . (2022). Sensitivity of remotely sensed pigment concentration via mixture density networks (MDNs) to uncertainties from atmospheric correction. Journal of Great Lakes Research, 1-16. Retrieved from https://doi.org/10.1016/j.jglr.2022.12.010
- Previous page
- Currently on page 2 2