Ehrlinger, L. ., Harmouch, H. ., Ilyas, I. ., & Naumann, F. . (2023). Preface QDB. Paper Preface QDB. Presented at the. Retrieved from https://ceur-ws.org/Vol-3462/QDB0.pdf
Publications
Filter by:
Wu, Z. ., Deshmukh, A. A., Wu, Y. ., Lin, J. ., & Mou, L. . (2023). Unsupervised Chunking With Hierarchical RNN. ArXiv, abs/2309.04919. https://doi.org/10.48550/arXiv.2309.04919
Lin, S.-C. ., Asai, A. ., Li, M. ., Oguz, B. ., Lin, J. ., Mehdad, Y. ., Yih, W.- tau ., & Chen, X. . (2023). How to Train Your DRAGON: Diverse Augmentation Towards Generalizable Dense Retrieval. ArXiv, abs/2302.07452. https://doi.org/10.48550/arXiv.2302.07452
Hebert, L. ., Golab, L. ., Poupart, P. ., & Cohen, R. . (2023). FedFormer: Contextual Federation With Attention in Reinforcement Learning. FedFormer: Contextual Federation With Attention in Reinforcement Learning. Presented at the. https://doi.org/10.5555/3545946.3598716
Bayat, F. F., Qian, K. ., Han, B. ., Sang, Y. ., Belyi, A. ., Khorshidi, S. ., Wu, F. ., Ilyas, I. ., & Li, Y. . (2023). FLEEK: Factual Error Detection and Correction With Evidence Retrieved From External Knowledge. ArXiv, abs/2310.17119. https://doi.org/10.48550/ARXIV.2310.17119
Lin, S.-C. ., Asai, A. ., Li, M. ., Oguz, B. ., Lin, J. ., Mehdad, Y. ., Yih, W.- tau ., & Chen, X. . (2023). How to Train Your Dragon: Diverse Augmentation Towards Generalizable Dense Retrieval. How to Train Your Dragon: Diverse Augmentation Towards Generalizable Dense Retrieval. Presented at the. Retrieved from https://aclanthology.org/2023.findings-emnlp.423
Hebert, L. ., Golab, L. ., Poupart, P. ., & Cohen, R. . (2023). FedFormer: Contextual Federation With Attention in Reinforcement Learning. FedFormer: Contextual Federation With Attention in Reinforcement Learning. Presented at the. https://doi.org/10.5555/3545946.3598716
Salem, K. . (2023). TECHNICAL PERSPECTIVE: Ad Hoc Transactions: What They Are And Why We Should Care. SIGMOD Record, 52, 6. https://doi.org/10.1145/3604437.3604439
Akiki, C. ., Ogundepo, O. ., Piktus, A. ., Zhang, X. ., Oladipo, A. ., Lin, J. ., & Potthast, M. . (2023). Spacerini: Plug-and-Play Search Engines With Pyserini and Hugging Face. Spacerini: Plug-and-Play Search Engines With Pyserini and Hugging Face. Presented at the. Retrieved from https://aclanthology.org/2023.emnlp-demo.12
Lin, J. ., Alfonso-Hermelo, D. ., Jeronymo, V. ., Kamalloo, E. ., Lassance, C. ., Nogueira, R. F., Ogundepo, O. ., Rezagholizadeh, M. ., Thakur, N. ., Yang, J.-H. ., & Zhang, X. . (2023). Simple Yet Effective Neural Ranking and Reranking Baselines for Cross-Lingual Information Retrieval. ArXiv, abs/2304.01019. https://doi.org/10.48550/arXiv.2304.01019