Tamber, M. S., Pradeep, R. ., & Lin, J. . (2023). Scaling Down, LiTting Up: Efficient Zero-Shot Listwise Reranking With Seq2seq Encoder-Decoder Models. ArXiv, abs/2312.16098. https://doi.org/10.48550/ARXIV.2312.16098
Publications
Filter by:
Ilyas, I. ., Lacerda, J. P., Li, Y. ., Minhas, U. F., Mousavi, A. ., Pound, J. ., Rekatsinas, T. ., & Sumanth, C. . (2023). Growing and Serving Large Open-Domain Knowledge Graphs. ArXiv, abs/2305.09464. https://doi.org/10.48550/arXiv.2305.09464
Hildred, J. ., Abebe, M. ., & Daudjee, K. . (2023). Caerus: Low-Latency Distributed Transactions for Geo-Replicated Systems. Proceedings of the VLDB Endowment (PVLDB), 17, 469-482. Retrieved from https://www.vldb.org/pvldb/vol17/p469-hildred.pdf
Adeyemi, M. ., Oladipo, A. ., Zhang, X. ., Alfonso-Hermelo, D. ., Rezagholizadeh, M. ., Chen, B. ., & Lin, J. . (2023). CIRAL at FIRE 2023: Cross-Lingual Information Retrieval for African Languages. CIRAL at FIRE 2023: Cross-Lingual Information Retrieval for African Languages. Presented at the. https://doi.org/10.1145/3632754.3633076
Fernando, L. ., Bindra, H. ., & Daudjee, K. . (2023). An Experimental Analysis of Quantile Sketches Over Data Streams. An Experimental Analysis of Quantile Sketches Over Data Streams. Presented at the. https://doi.org/10.48786/edbt.2023.34
Pradeep, R. ., Chen, H. ., Gu, L. ., Tamber, M. S., & Lin, J. . (2023). PyGaggle: A Gaggle of Resources for Open-Domain Question Answering. PyGaggle: A Gaggle of Resources for Open-Domain Question Answering. Presented at the. https://doi.org/10.1007/978-3-031-28241-6_10
Adeyemi, M. ., Oladipo, A. ., Pradeep, R. ., & Lin, J. . (2023). Zero-Shot Cross-Lingual Reranking With Large Language Models for Low-Resource Languages. ArXiv, abs/2312.16159. https://doi.org/10.48550/ARXIV.2312.16159
Mousavi, A. ., Zhan, X. ., Bai, H. ., Shi, P. ., Rekatsinas, T. ., Han, B. ., Li, Y. ., Pound, J. ., Susskind, J. M., Schluter, N. ., Ilyas, I. ., & Jaitly, N. . (2023). Construction of Paired Knowledge Graph-Text Datasets Informed by Cyclic Evaluation. ArXiv, abs/2309.11669. https://doi.org/10.48550/arXiv.2309.11669
Lin, S.-C. ., Asai, A. ., Li, M. ., Oguz, B. ., Lin, J. ., Mehdad, Y. ., Yih, W.- tau ., & Chen, X. . (2023). How to Train Your Dragon: Diverse Augmentation Towards Generalizable Dense Retrieval. How to Train Your Dragon: Diverse Augmentation Towards Generalizable Dense Retrieval. Presented at the. Retrieved from https://aclanthology.org/2023.findings-emnlp.423
Thakur, N. ., Bonifacio, L. ., Zhang, X. ., Ogundepo, O. ., Kamalloo, E. ., Alfonso-Hermelo, D. ., Li, X. ., Liu, Q. ., Chen, B. ., Rezagholizadeh, M. ., & Lin, J. . (2023). NoMIRACL: Knowing When You Don\textquoterightt Know for Robust Multilingual Retrieval-Augmented Generation. ArXiv, abs/2312.11361. https://doi.org/10.48550/ARXIV.2312.11361