BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20230312T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20231105T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:68320c06a2407 DTSTART;TZID=America/Toronto:20231115T140000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20231115T170000 URL:/data-science/events/data-science-industry-panel-ev ent-industry-and-academic SUMMARY:Data Science Industry Panel Event: Industry and Academic Perspectiv es CLASS:PUBLIC DESCRIPTION:Summary \n\nJOIN US NOVEMBER 15\, 2023 AT 2 P.M. IN DC 1302 FOR THE DATA SCIENCE\nINDUSTRY PANEL EVENT: INDUSTRY AND ACADEMIC PERSPECTIVE S\n\nRegister to attend\n[https://www.ticketfi.com/event/5364/data-science -industry-panel-event-industry-and-academic-perspectives]\n\n------------- ------------\n\nEVENT HIGHLIGHTS\n\nEXPERT TALKS:\n\nHear from YANNICK LA LLEMENT\, VP\, Global Artificial Intelligence &\nMachine Learning at Scoti abank and TAMER ÖZSU\, Professor in the\nDavid R. Cheriton School of Co mputer Science at the University of\nÀ¶Ý®ÊÓÆµ\, as they explore data sci ence from an industry and academic\nperspective.\n\nPANEL DISCUSSION:\n\nO ur distinguished panel of experts will answer questions and further\ndiscu ss perspectives of Data Science.\n\n* Tamer Özsu\, Professor | David R. Cheriton School of Computer\nScience  \n * Yannick Lallement\, VP\, Glob al Artificial Intelligence & Machine\nLearning | Scotiabank \n * Jeff Ha tcher\, Director\, Advanced Analytic | Canadian Institute\nfor Health Inf ormation \n\nNETWORKING OPPORTUNITIES: \n\nThe talk and panel event will be followed by an opportunity to network\nwith our experts\, special gues ts and fellow classmates in DC 1301.\n_REFRESHMENTS WILL BE SERVED. _\n\n -------------------------\n\nEVENT TALKS\n\nSCOTIABANK'S APPROACH TO LARGE LANGUAGE MODELS (LLM) \nYannick Lallement | VP\, Global Artificial Intel ligence & Machine\nLearning\, Scotiabank \n\nA presentation on Scotiabank 's risk-based approach to LLM enablement.\nIncluding the usage of ChatGPT\ , the major use cases identified so far\nand their road to production\, an d an update on various LLM pilots the\nbank is running. \n\n A SYSTEMATI C VIEW OF DATA SCIENCE \nTamer Özsu | Professor\, David R. Cheriton Sch ool of Computer\nScience \n\n​There is a data-driven revolution underwa y in science and society\,\ndisrupting every form of enterprise. We are co llecting and storing\ndata more rapidly than ever before. There is an incr easing recognition\nthat data science can assist in leveraging this data a nd the insights\nobtained from it into products\, systems\, and policies. This has\nresulted in the formation within academia of data science resear ch\ncentres\, institutes and even academic units and the establishment of\ nmajor initiatives within every major industrial organization. However\,\n our understanding of data science is vague and highly varied and\, in\nman y cases\, are squeezed to fit the available openings within an\ninstitutio n. There is a need to approach this field systematically to\ndefine its sc ope and its boundaries. The objective of this talk is to\nprovide such a c onsistent and systematic study of the scoping of data\nscience.   \n DTSTAMP:20250524T181222Z END:VEVENT END:VCALENDAR