BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20230312T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20231105T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:6831e75ad3314 DTSTART;TZID=America/Toronto:20240207T103000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240207T113000 URL:/computer-science/events/seminar-ai-learning-genera tive-models-from-a-control-perspective-for-scientific-discovery SUMMARY:Seminar • Artificial Intelligence • Learning Generative Models\ nfrom a Control Perspective for Scientific Discovery CLASS:PUBLIC DESCRIPTION:Summary \n\nPLEASE NOTE: THIS SEMINAR WILL TAKE PLACE IN DC 130 4.\n\nDINGHUAI ZHANG\, PHD CANDIDATE\n_Mila_\n\nAdvancements in scientific discovery have always been at the forefront\nof human endeavor\, particul arly in complex domains such as molecule\nsynthesis. The intrinsic challen ges in these fields stem from two main\nfactors: the vast and combinatoria lly complex high-dimensional search\nspaces\, and the costly evaluation of scientific hypotheses. Therefore\,\nleveraging machine learning offers a promising avenue to expedite the\nscientific discovery process.\n DTSTAMP:20250524T153554Z END:VEVENT END:VCALENDAR