BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20230312T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20231105T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:6830393469cfe DTSTART;TZID=America/Toronto:20240129T103000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240129T113000 URL:/computer-science/events/seminar-machine-learning-d istributionally-robust-machine-learning SUMMARY:Seminar • Machine Learning • Distributionally Robust Machine\nL earning CLASS:PUBLIC DESCRIPTION:Summary \n\nPLEASE NOTE: THIS SEMINAR WILL TAKE PLACE IN DC 130 4.\n\nSHIORI SAGAWA\, PHD CANDIDATE\n_Department of Computer Science\, Sta nford University_\n\nMachine learning systems are powerful\, but they can fail due to\ndistribution shifts: mismatches in the data distribution betw een\ntraining and deployment. Distribution shifts are ubiquitous and have\ nreal-world consequences: models can fail on subpopulations (e.g.\,\ndemog raphic groups) and on new domains unseen during training (e.g.\,\nnew hosp itals).\n DTSTAMP:20250523T090036Z END:VEVENT END:VCALENDAR