BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20230312T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20221106T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:683330776d064 DTSTART;TZID=America/Toronto:20230718T150000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20230718T180000 URL:/computer-science/events/phd-defence-ml-nlp-less-is -more-restricted-representations-for-better-interpretability-and-generaliz ability SUMMARY:PhD Defence • Machine Learning | Natural Language Processing •\ nLess is More: Restricted Representations for Better Interpretability\nand Generalizability CLASS:PUBLIC DESCRIPTION:Summary \n\nPLEASE NOTE: THIS PHD DEFENCE WILL TAKE PLACE ONLIN E.\n\nZHIYING (GIN) JIANG\, PHD CANDIDATE\n_David R. Cheriton School of Co mputer Science_\n\nSUPERVISOR: Professor Jimmy Lin\n\nIn this thesis\, we aim at improving interpretability and\ngeneralizability through restrictin g representations. We choose to\napproach interpretability by focusing on attribution analysis to\nunderstand which features contribute to predictio n on BERT\, and to\napproach generalizability by focusing on effective met hods in low-data\nregime.\n DTSTAMP:20250525T150007Z END:VEVENT END:VCALENDAR