BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20200308T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20201101T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:683748476b402 DTSTART;TZID=America/Toronto:20210208T120000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20210208T120000 URL:/computer-science/events/seminar-machine-learning-n ew-advances-in-adversarially-robust-and-secure-machine-learning SUMMARY:Seminar • Machine Learning — New Advances in (Adversarially)\nR obust and Secure Machine Learning CLASS:PUBLIC DESCRIPTION:Summary \n\nPLEASE NOTE: THIS SEMINAR WILL BE GIVEN ONLINE.\n\n HONGYANG ZHANG\, POSTDOCTORAL FELLOW\n_Toyota Technological Institute at Chicago_\n\nDeep learning models are often vulnerable to adversarial examp les. In\nthis talk\, we will focus on robustness and security of machine\n learning against adversarial examples. There are two types of defenses\nag ainst such attacks: 1) empirical and 2) certified adversarial\nrobustness. \n DTSTAMP:20250528T173047Z END:VEVENT END:VCALENDAR