Seminar /combinatorics-and-optimization/ en Tutte colloquium-Stephen Melczer /combinatorics-and-optimization/events/tutte-colloquium-stephen-melczer-0 <span class="field field--name-title field--type-string field--label-hidden">Tutte colloquium-Stephen Melczer</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/combinatorics-and-optimization/users/cmillers" typeof="schema:Person" property="schema:name" datatype="" xml:lang="">Cody Miller-Sweeney</span></span> <span class="field field--name-created field--type-created field--label-hidden">Thu, 07/03/2025 - 13:56</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="x"><span><span><span><strong>Title:</strong><span>Automated Sequence Asymptotics</span></span></span></span></p> <table width="500"><tbody><tr><td><strong>Speaker:</strong></td> <td><span lang="EN-CA" xml:lang="EN-CA" xml:lang="EN-CA"><span>Stephen Melczer</span></span></td> </tr><tr><td><strong>Affiliation:</strong></td> <td><span lang="EN-CA" xml:lang="EN-CA" xml:lang="EN-CA"><span>University of À¶Ý®ÊÓÆµ</span></span></td> </tr><tr><td><strong>Location:</strong></td> <td>MC 5501</td> </tr></tbody></table><p class="x"><span><span><span><strong>Abstract:</strong></span><span lang="EN-CA" xml:lang="EN-CA" xml:lang="EN-CA"><span>Computing with any sort of object requires a way of encoding it on a computer, which poses a problem in enumerative combinatorics where the objects of interest are (infinite) combinatorial sequences. Thankfully, the generating function of a combinatorial sequence often satisfies natural algebraic/differential/functional equations, which can then be viewed as data structures for the sequence. In this talk we survey methods to take a sequence encoded by such data structures and automatically determine asymptotic behaviour using techniques from the field of analytic combinatorics. We also discuss methods to automatically characterize the asymptotic behaviour of multivariate sequences using analytic combinatorics in several variables (ACSV). The focus of each topic will be rigorous algorithms that have already been implemented in computer algebra systems and can be easily used by anyone.</span></span></span></span></p> </div> </div> </div> </div> </section> Thu, 03 Jul 2025 17:56:08 +0000 Cody Miller-Sweeney 2486 at /combinatorics-and-optimization Algebraic and enumerative combinatorics seminar-Karen Yeats /combinatorics-and-optimization/events/algebraic-and-enumerative-combinatorics-seminar-karen-yeats-2 <span class="field field--name-title field--type-string field--label-hidden">Algebraic and enumerative combinatorics seminar-Karen Yeats</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/combinatorics-and-optimization/users/cmillers" typeof="schema:Person" property="schema:name" datatype="" xml:lang="">Cody Miller-Sweeney</span></span> <span class="field field--name-created field--type-created field--label-hidden">Thu, 07/03/2025 - 09:21</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="MsoPlainText"><strong>Title:</strong>Sizes of witnesses in covtree</p> <table width="500"><tbody><tr><td>Speaker</td> <td>Karen Yeats</td> </tr><tr><td>Affiliation</td> <td>University of À¶Ý®ÊÓÆµ</td> </tr><tr><td>Location</td> <td>MC 5479</td> </tr></tbody></table><p><strong>Abstract: </strong>Here is a purely combinatorial problem that arose in causal set theory.  Let {P_1, ... , P_k} be distinct unlabelled posets all with n elements.  Suppose there is a poset Q such that {P_1, ... , P_k} is exactly the set of downsets of Q of size n up to isomorphism. Given n and k can we give a tight upper bound on the minimum size of such a Q? As with newspaper headlines, the answer to the question is no, at least for the moment, but I'll explain what we do know.  Joint work with Jette Gutzeit, Kimia Shaban, and Stav Zalel.</p> <p><strong>There will be a pre-seminar presenting relevant background at the beginning graduate level starting at 1:30pm,</strong></p> </div> </div> </div> </div> </section> Thu, 03 Jul 2025 13:21:29 +0000 Cody Miller-Sweeney 2485 at /combinatorics-and-optimization Algebraic and enumerative combinatorics seminar-Farhad Soltani /combinatorics-and-optimization/events/algebraic-and-enumerative-combinatorics-seminar-farhad <span class="field field--name-title field--type-string field--label-hidden">Algebraic and enumerative combinatorics seminar-Farhad Soltani</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/combinatorics-and-optimization/users/cmillers" typeof="schema:Person" property="schema:name" datatype="" xml:lang="">Cody Miller-Sweeney</span></span> <span class="field field--name-created field--type-created field--label-hidden">Fri, 06/27/2025 - 09:22</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="MsoPlainText"><strong>Title:</strong>Quasisymmetric Harmonics in Superspace</p> <table width="500"><tbody><tr><td>Speaker</td> <td>Farhad Soltani</td> </tr><tr><td>Affiliation</td> <td>York University</td> </tr><tr><td>Location</td> <td>MC 5479</td> </tr></tbody></table><p><strong>Abstract: </strong>The harmonics of quasisymmetric polynomials in superspace are the  orthogonal complement of the ideal generated by quasisymmetric polynomials without constant term. In this talk, I will discuss the harmonics and present the first basis of this space, which is indexed by a specific family of nested forests.</p> <p><strong>There will be a pre-seminar presenting relevant background at the beginning graduate level starting at 1:30pm,</strong></p> </div> </div> </div> </div> </section> Fri, 27 Jun 2025 13:22:36 +0000 Cody Miller-Sweeney 2484 at /combinatorics-and-optimization Tutte colloquium-Henry Wolkowicz /combinatorics-and-optimization/events/tutte-colloquium-henry-wolkowicz-2 <span class="field field--name-title field--type-string field--label-hidden">Tutte colloquium-Henry Wolkowicz</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/combinatorics-and-optimization/users/cmillers" typeof="schema:Person" property="schema:name" datatype="" xml:lang="">Cody Miller-Sweeney</span></span> <span class="field field--name-created field--type-created field--label-hidden">Thu, 06/26/2025 - 09:21</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="x"><span><span><span><strong>Title:</strong></span></span></span><span lang="EN-CA" xml:lang="EN-CA" xml:lang="EN-CA"><span>The omega-Condition Number: Applications to Preconditioning and Low Rank Generalized Jacobian Updating</span></span></p> <table width="500"><tbody><tr><td><strong>Speaker:</strong></td> <td><span lang="EN-CA" xml:lang="EN-CA" xml:lang="EN-CA"><span>Henry Wolkowicz</span></span></td> </tr><tr><td><strong>Affiliation:</strong></td> <td><span lang="EN-CA" xml:lang="EN-CA" xml:lang="EN-CA"><span><span>University of </span>À¶Ý®ÊÓÆµ</span></span></td> </tr><tr><td><strong>Location:</strong></td> <td>MC 5501</td> </tr></tbody></table><p class="x"><span><span><span><strong>Abstract: </strong>Preconditioning is essential in iterative methods for solving linear systems. It is also the implicit objective in updating approximations of Jacobians in optimization methods, e.g.,~in quasi-Newton methods. We study a nonclassic matrix condition number, the omega-condition number}, omega for short. omega is the ratio of: the arithmetic and geometric means of the singular values, rather than the largest and smallest for the classical kappa-condition number. The simple functions in omega allow one to exploit  first order optimality conditions. We use this fact to derive explicit formulae for (i) omega-optimal low rank updating of generalized Jacobians arising in the context of nonsmooth Newton methods; and (ii) omega-optimal preconditioners of special structure for  iterative methods for linear systems. In the latter context, we analyze the benefits of omega for (a) improving the clustering of eigenvalues; (b) reducing the number of iterations; and (c) estimating the actual condition of a linear system. Moreover we show strong theoretical connections between the omega-optimal preconditioners and incomplete Cholesky factorizations, and highlight the misleading effects arising from the inverse invariance of kappa. Our results confirm the efficacy of using the omega-condition number compared to the kappa-condition number.</span></span></span></p> <p><span><span><span>(Joint work with: Woosuk L. Jung, David Torregrosa-Belen.)</span></span></span></p> </div> </div> </div> </div> </section> Thu, 26 Jun 2025 13:21:07 +0000 Cody Miller-Sweeney 2483 at /combinatorics-and-optimization Algebraic and enumerative combinatorics seminar-Leo Jiang /combinatorics-and-optimization/events/algebraic-and-enumerative-combinatorics-seminar-leo-jiang <span class="field field--name-title field--type-string field--label-hidden">Algebraic and enumerative combinatorics seminar-Leo Jiang</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/combinatorics-and-optimization/users/cmillers" typeof="schema:Person" property="schema:name" datatype="" xml:lang="">Cody Miller-Sweeney</span></span> <span class="field field--name-created field--type-created field--label-hidden">Fri, 06/20/2025 - 13:13</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="MsoPlainText"><strong>Title:</strong>Oriented graded Möbius algebras</p> <table width="500"><tbody><tr><td>Speaker</td> <td>Leo Jiang</td> </tr><tr><td>Affiliation</td> <td>University of Toronto</td> </tr><tr><td>Location</td> <td>MC 5479</td> </tr></tbody></table><p><strong>Abstract:</strong>The graded Möbius algebra B(M) of a matroid M contains much combinatorial information about the flats of M. Its algebraic properties were instrumental in the proof of the Dowling—Wilson top-heavy conjecture. We will introduce a skew-commutative analogue OB(M) associated to every oriented matroid M, and discuss its algebraic structure. This is part of ongoing work joint with Yu Li.</p> <p><strong>There will be a pre-seminar presenting relevant background at the beginning graduate level starting at 1:30pm</strong></p> </div> </div> </div> </div> </section> Fri, 20 Jun 2025 17:13:59 +0000 Cody Miller-Sweeney 2481 at /combinatorics-and-optimization Tutte colloquium-Gary Au /combinatorics-and-optimization/events/tutte-colloquium-gary-au-0 <span class="field field--name-title field--type-string field--label-hidden">Tutte colloquium-Gary Au</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/combinatorics-and-optimization/users/cmillers" typeof="schema:Person" property="schema:name" datatype="" xml:lang="">Cody Miller-Sweeney</span></span> <span class="field field--name-created field--type-created field--label-hidden">Thu, 06/19/2025 - 09:35</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="x"><span><span><span><strong>Title:</strong></span></span></span><span lang="EN-CA" xml:lang="EN-CA" xml:lang="EN-CA"><span><span>Worst-case instances of the stable set problem of graphs for the Lovász–Schrijver SDP hierarchy</span></span></span></p> <table width="500"><tbody><tr><td><strong>Speaker:</strong></td> <td><span lang="EN-CA" xml:lang="EN-CA" xml:lang="EN-CA"><span><span>Gary Au</span></span></span></td> </tr><tr><td><strong>Affiliation:</strong></td> <td><span lang="EN-CA" xml:lang="EN-CA" xml:lang="EN-CA"><span><span>University of Saskatchewan</span></span></span></td> </tr><tr><td><strong>Location:</strong></td> <td>MC 5501</td> </tr></tbody></table><p class="x"><span><span><span><strong>Abstract:</strong>(Based on joint work with Levent Tunçel.)</span></span></span></p> <p><span><span><span lang="EN-CA" xml:lang="EN-CA" xml:lang="EN-CA">In this talk, we discuss semidefinite relaxations of the stable set problem of graphs generated by the lift-and-project operator LS_+ (due to Lovász and Schrijver), and present some of our recent progress on this front. In particular, we show that for every positive integer k, the smallest graph with LS_+-rank k contains exactly 3k vertices. This result is sharp and settles a conjecture posed by Lipták and Tunçel from 2003.</span></span></span></p> <p><span><span><span lang="EN-CA" xml:lang="EN-CA" xml:lang="EN-CA">The talk will be accessible to a general audience, and does not assume any prior knowledge of lift-and-project methods.</span></span></span></p> </div> </div> </div> </div> </section> Thu, 19 Jun 2025 13:35:30 +0000 Cody Miller-Sweeney 2480 at /combinatorics-and-optimization Algebraic Graph Theory-Eric Culver /combinatorics-and-optimization/events/algebraic-graph-theory-eric-culver <span class="field field--name-title field--type-string field--label-hidden">Algebraic Graph Theory-Eric Culver</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/combinatorics-and-optimization/users/cmillers" typeof="schema:Person" property="schema:name" datatype="" xml:lang="">Cody Miller-Sweeney</span></span> <span class="field field--name-created field--type-created field--label-hidden">Thu, 06/12/2025 - 10:05</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p><span><span><span><strong>Title: </strong>Two Distinct Eigenvalues from a New Graph Product</span></span></span></p> <table width="500"><tbody><tr><td><strong>Speaker:</strong></td> <td> <p class="elementtoproof"><span><span><span>Eric Culver</span></span></span></p> </td> </tr><tr><td><strong><span><span><span>Affiliation:</span></span></span></strong></td> <td><span><span><span>Brigham Young University</span></span></span></td> </tr><tr><td><strong>Location:</strong></td> <td><span>Please contact<span> </span></span><a href="mailto:smlato@uwaterloo.ca">Sabrina Lato</a><span><span> </span></span><span>for Zoom link.</span></td> </tr></tbody></table><p><span><span><span><strong>Abstract:</strong><span><span><span>The parameter q(G) of a graph G is the minimum number of distinct eigenvalues of a symmetric matrix whose pattern is given by G.  We introduce a novel graph product by which we construct new infinite families of graphs that achieve q(G)=2.  Several graph families for which it is already known that q(G)=2 can also be thought of as arising from this new product.</span></span></span></span></span></span></p> </div> </div> </div> </div> </section> Thu, 12 Jun 2025 14:05:19 +0000 Cody Miller-Sweeney 2476 at /combinatorics-and-optimization Tutte colloquium-Sepehr Hajebi /combinatorics-and-optimization/events/tutte-colloquium-sepehr-hajebi <span class="field field--name-title field--type-string field--label-hidden">Tutte colloquium-Sepehr Hajebi</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/combinatorics-and-optimization/users/cmillers" typeof="schema:Person" property="schema:name" datatype="" xml:lang="">Cody Miller-Sweeney</span></span> <span class="field field--name-created field--type-created field--label-hidden">Thu, 06/12/2025 - 09:16</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="x"><span><span><span><strong>Title:</strong></span></span></span><span lang="EN-CA" xml:lang="EN-CA" xml:lang="EN-CA"><span><span>Complete bipartite induced minors (and treewidth)</span></span></span></p> <table width="500"><tbody><tr><td><strong>Speaker:</strong></td> <td><span lang="EN-CA" xml:lang="EN-CA" xml:lang="EN-CA"><span>Sepehr Hajebi</span></span></td> </tr><tr><td><strong>Affiliation:</strong></td> <td><span lang="EN-CA" xml:lang="EN-CA" xml:lang="EN-CA"><span>University of À¶Ý®ÊÓÆµ</span></span></td> </tr><tr><td><strong>Location:</strong></td> <td>MC 5501</td> </tr></tbody></table><p class="x"><span><span><span><strong>Abstract:</strong><span>I will present a result that describes the unavoidable induced subgraphs of graphs with a large complete bipartite induced minor, and will discuss the connections and applications to bounding the treewidth in hereditary classes of graphs. If time permits, I will also sketch some proofs.</span></span></span></span></p> <p><span><span> <span lang="EN-CA" xml:lang="EN-CA" xml:lang="EN-CA"><span>Joint work with Maria Chudnovsky and Sophie Spirkl.</span></span></span></span></p> </div> </div> </div> </div> </section> Thu, 12 Jun 2025 13:16:55 +0000 Cody Miller-Sweeney 2475 at /combinatorics-and-optimization Algebraic and enumerative combinatorics seminar-Elana Kalashnikov /combinatorics-and-optimization/events/algebraic-and-enumerative-combinatorics-seminar-elana <span class="field field--name-title field--type-string field--label-hidden">Algebraic and enumerative combinatorics seminar-Elana Kalashnikov</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/combinatorics-and-optimization/users/cmillers" typeof="schema:Person" property="schema:name" datatype="" xml:lang="">Cody Miller-Sweeney</span></span> <span class="field field--name-created field--type-created field--label-hidden">Mon, 06/09/2025 - 08:41</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p class="MsoPlainText"><strong>Title:</strong>The Abelian/non-Abelian correspondence and Littlewood-Richardson</p> <table width="500"><tbody><tr><td>Speaker</td> <td>Elana Kalashnikov</td> </tr><tr><td>Affiliation</td> <td>University of À¶Ý®ÊÓÆµ</td> </tr><tr><td>Location</td> <td>MC 5479</td> </tr></tbody></table><p><strong>Abstract:</strong>The Abelian/non-Abelian correspondence gives rise to a natural basis for the cohomology of flag varieties, which - except for Grassmannians - is distinct from the Schubert basis. I will describe this basis and its multiplication rules, and explain how to relate it to the Schubert basis for two-step flag varieties. I will then explain how this leads to new tableaux Littlewood--Richardson rules for many products of Schubert classes. This is joint work (separately) with Wei Gu and Linda Chen.</p> <p><strong>There will be a pre-seminar presenting relevant background at the beginning graduate level starting at 1:30pm,</strong></p> </div> </div> </div> </div> </section> Mon, 09 Jun 2025 12:41:07 +0000 Cody Miller-Sweeney 2474 at /combinatorics-and-optimization Algebraic Graph Theory-Blas Fernandez /combinatorics-and-optimization/events/algebraic-graph-theory-blas-fernandez <span class="field field--name-title field--type-string field--label-hidden">Algebraic Graph Theory-Blas Fernandez</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span lang="" about="/combinatorics-and-optimization/users/cmillers" typeof="schema:Person" property="schema:name" datatype="" xml:lang="">Cody Miller-Sweeney</span></span> <span class="field field--name-created field--type-created field--label-hidden">Thu, 06/05/2025 - 08:58</span> <section class="uw-contained-width uw-section-spacing--default uw-section-separator--none uw-column-separator--none layout layout--uw-1-col"><div class="layout__region layout__region--first"> <div class="uw-text-align--left block block-layout-builder block-inline-blockuw-cbl-copy-text"> <div class="uw-copy-text"> <div class="uw-copy-text__wrapper "> <p><span><span><span><strong>Title: </strong>2-Y-homogeneous distance-biregular graphs</span></span></span></p> <table width="500"><tbody><tr><td><strong>Speaker:</strong></td> <td> <p class="elementtoproof"><span><span><span>Blas Fernandez</span></span></span></p> </td> </tr><tr><td><strong><span><span><span>Affiliation:</span></span></span></strong></td> <td><span><span><span>IMFM, Ljubljana; UP FAMNIT, Koper, Slovenia</span></span></span></td> </tr><tr><td><strong>Location:</strong></td> <td><span>Please contact<span> </span></span><a href="mailto:smlato@uwaterloo.ca">Sabrina Lato</a><span><span> </span></span><span>for Zoom link.</span></td> </tr></tbody></table><p><span><span><span><strong>Abstract: </strong><span><span><span>Distance-biregular graphs (DBRGs) generalize distance-regular graphs by admitting a bipartition of the vertex set, where each part satisfies local distance-regularity  under distinct intersection arrays. In recent years, a particular subclass of these graphs, those satisfying the so-called 2-Y-homogeneous condition, has garnered increasing attention due to its rich connections with combinatorial design theory and the representation theory of Terwilliger algebras. In this talk, we will examine the key structural conditions that characterize 2-Y-homogeneous DBRGs. We will survey recent progress in their classification under various combinatorial constraints, highlighting both known results and open problems.</span></span></span></span></span></span></p> </div> </div> </div> </div> </section> Thu, 05 Jun 2025 12:58:39 +0000 Cody Miller-Sweeney 2473 at /combinatorics-and-optimization