BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20250309T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20241103T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:686c096052924 DTSTART;TZID=America/Toronto:20250704T153000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250704T163000 URL:/combinatorics-and-optimization/events/tutte-colloq uium-henry-wolkowicz-2 SUMMARY:Tutte colloquium-Henry Wolkowicz CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE:The omega-Condition Number: Applications to P reconditioning and\nLow Rank Generalized Jacobian Updating\n\nSPEAKER:\n H enry Wolkowicz\n\nAFFILIATION:\n University of À¶Ý®ÊÓÆµ\n\nLOCATION:\n MC 5501\n\nABSTRACT: Preconditioning is essential in iterative methods for\n solving linear systems. It is also the implicit objective in updating\napp roximations of Jacobians in optimization methods\, e.g.\,~in\nquasi-Newton methods. We study a nonclassic matrix condition number\,\nthe omega-condi tion number}\, omega for short. omega is the ratio of:\nthe arithmetic and geometric means of the singular values\, rather than\nthe largest and sma llest for the classical kappa-condition number. The\nsimple functions in o mega allow one to exploit  first order\noptimality conditions. We use thi s fact to derive explicit formulae\nfor (i) omega-optimal low rank updatin g of generalized Jacobians\narising in the context of nonsmooth Newton met hods\; and (ii)\nomega-optimal preconditioners of special structure for   iterative\nmethods for linear systems. In the latter context\, we analyze the\nbenefits of omega for (a) improving the clustering of eigenvalues\; ( b)\nreducing the number of iterations\; and (c) estimating the actual\ncon dition of a linear system. Moreover we show strong theoretical\nconnection s between the omega-optimal preconditioners and incomplete\nCholesky facto rizations\, and highlight the misleading effects arising\nfrom the inverse invariance of kappa. Our results confirm the efficacy\nof using the omega -condition number compared to the kappa-condition\nnumber.\n\n(Joint work with: Woosuk L. Jung\, David Torregrosa-Belen.)\n\n \n DTSTAMP:20250707T175232Z END:VEVENT END:VCALENDAR