BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20250309T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20241103T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:6870cf6eb0cce DTSTART;TZID=America/Toronto:20250523T153000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250523T163000 URL:/combinatorics-and-optimization/events/tutte-colloq uium-david-torregrossa-belen SUMMARY:Tutte colloquium-David Torregrossa Belén CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE:Splitting algorithms for monotone inclusions with\nminimal dimension\n\nSPEAKER:\n David Torregrossa Belén\n\nAFFILIA TION:\n Center for Mathematical Modeling\, University of Chile\n\nLOCATIO N:\n MC 5501\n\nABSTRACT: Many situations in convex optimization can be mo deled as the\nproblem of finding a zero of a monotone operator\, which ca n be\nregarded as a generalization of the gradient of a differentiable\nc onvex function. In order to numerically address this monotone\ninclusion problem\, it is vital to be able to exploit the inherent\nstructure of th e operator defining it. The algorithms in the family\nof the splitting me thods achieve this by iteratively solving simpler\nsubtasks that are defi ned by separately using some parts of the\noriginal problem.\n\nIn the fi rst part of this talk\, we will introduce some of the\nmost relevant mono tone inclusion problems and present their\napplications to optimization. Subsequently\, we will draw our\nattention to a common anomaly that has p ersisted in the design of\nmethods in this family: the dimension of the u nderlying space\n—which we denote as lifting— of the algorithms abnor mally\nincreases as the problem size grows. This has direct implications on\nthe computational performance of the method as a result of the\nincre ase of memory requirements. In this framework\, we characterize\nthe mini mal lifting that can be obtained by splitting algorithms\nadept at solvin g certain general monotone inclusions. Moreover\, we\npresent splitting m ethods matching these lifting bounds\, and\nthus having minimal lifting.\ n\n \n DTSTAMP:20250711T084638Z END:VEVENT END:VCALENDAR