BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20250309T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20241103T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:6870fc3e8a240 DTSTART;TZID=America/Toronto:20250327T140000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250327T150000 URL:/combinatorics-and-optimization/events/algebraic-an d-enumerative-combinatorics-seminar-michael SUMMARY:Algebraic and enumerative combinatorics seminar-Michael Borinsky CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Asymptotic count of edge-bicolored graphs\n \nSpeaker\n Michael Borinsky\n\nAffiliation\n Perimeter Institute and C&O \n\nLocation\n MC 5479\n\n ABSTRACT: I will talk about recent joint work with Chiara Meroni and\nMax Wiesmann\, where we showed that specific expon ential bivariate\nintegrals serve as generating functions of labeled edge- bicolored\ngraphs. Based on this\, we prove an asymptotic formula for the number\nof regular edge-bicolored graphs with arbitrary weights assigned t o\ndifferent vertex structures. \n\nThe asymptotic behavior is governed by the critical points of a\npolynomial. An interesting application of this purely combinatorial\nwork to mathematical physics is the Ising model on a random graph. I\nwill explain how its phase transitions arise from our fo rmula.\n\nTHERE WILL BE A PRE-SEMINAR PRESENTING RELEVANT BACKGROUND AT TH E\nBEGINNING GRADUATE LEVEL STARTING AT 1PM\,\n DTSTAMP:20250711T115750Z END:VEVENT END:VCALENDAR