BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20250309T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20241103T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:6827b05aabe3d DTSTART;TZID=America/Toronto:20250318T150000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250318T160000 URL:/combinatorics-and-optimization/events/graphs-and-m atroids-lior-gishboliner SUMMARY:Graphs and Matroids - Lior Gishboliner CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE:New results on the complexity of edge-modific ation problems\n\nSPEAKER:\n Lior Gishboliner\n\nAFFILIATION:\n University of Toronto\n\nLOCATION:\n MC 5479\n\nABSTRACT: \n\nFor a k-uniform hyperg raph H\, the H-freeness edge modification problem\nis the algorithmic prob lem of finding\, for a given k-uniform input G\,\nthe distance of G from H -freeness\, i.e.\, the minimum number of edges\nthat need to be deleted fr om G in order to obtain an H-free\nhypergraph. I will present new results on the computational complexity\nof this general problem. In particular\, I will show that if H is not\nk-partite\, then it is NP-hard to compute th e distance to\nH-freeness\, and even to approximate this distance up to an additive\nerror of n^{k-delta} for any fixed delta > 0. This resolves a special\ncase of a problem raised by Ailon and Alon.\n\nThis is a joint work with Yevgeny Levanzov and Asaf Shapira.\n DTSTAMP:20250516T213834Z END:VEVENT END:VCALENDAR