BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20240310T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20241103T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:686c8090b426d DTSTART;TZID=America/Toronto:20250207T153000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250207T163000 URL:/combinatorics-and-optimization/events/tutte-colloq uium-levent-tuncel-2 SUMMARY:Tutte colloquium-Levent Tuncel CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: A New Complexity Analysis of Primal-Dual Int erior-Point Methods\nwith Applications to Hyperbolic Cone Programming\n\nS PEAKER:\n Levent Tuncel\n\nAFFILIATION:\n University of À¶Ý®ÊÓÆµ\n\nLOCATI ON:\n MC 5501\n\nABSTRACT: Primal-dual interior-point methods stand at the forefront of\nconvex optimization\, distinguished by their theoretical ef ficiency and\npractical robustness. After presenting the fundamental \nst ructure of these algorithms\, I will introduce a complexity measure\nfor a large family of primal-dual algorithms. A consequence of the new\nanalyse s of this complexity measure is a substantial improvement of\nthe iteratio n \ncomplexity bounds for these primal-dual algorithms on hyperbolic cone \nprogramming problems.\n\nThis talk is based on joint work with Joachim D ahl and Lieven\nVandenberghe.\n\n \n\n \n DTSTAMP:20250708T022104Z END:VEVENT END:VCALENDAR