BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20240310T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20241103T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:6827afed40b14 DTSTART;TZID=America/Toronto:20250120T130000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250120T143000 URL:/combinatorics-and-optimization/events/co-reading-g roup-noah-weninger-1 SUMMARY:C&O Reading Group -Noah Weninger CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Complexity in linear multilevel programming\ n\nSPEAKER:\n Noah Weninger\n\nAFFILIATION:\n University of À¶Ý®ÊÓÆµ\n\nLO CATION:\n MC 6029\n\nABSTRACT:Bilevel linear programming (BLP) is a genera lization of\nlinear programming (LP) in which a subset of the variables is \nconstrained to be optimal for a second LP\, called the lower-level\nprob lem. Multilevel linear programming (MLP) extends this further by\nreplacin g the lower-level LP with a BLP or even another MLP\, up to\nsome finite n umber of levels. MLP can be seen as a game-theoretic\nextension of LP wher e multiple decision makers with competing\ninterests each have control ove r some subset of the variables in the\nproblem. We discuss the computation al complexity of solving MLP\nproblems\, including some recent results on the complexity of\ndetermining whether MLPs are unbounded (Rodrigues\, Car valho\, and Anjos\n2024). We will end with an interesting open problem abo ut the\ncomplexity of determining unboundedness for a\nspecial case of BLP .\n DTSTAMP:20250516T213645Z END:VEVENT END:VCALENDAR