BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20240310T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20241103T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:686a3c78765d2 DTSTART;TZID=America/Toronto:20250117T153000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250117T163000 URL:/combinatorics-and-optimization/events/tutte-colloq uium-stephan-pfannerer-mittas SUMMARY:Tutte colloquium-Stephan Pfannerer-Mittas CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE:A mystery group action and the mystery statis tic\n\nSPEAKER:\n Stephan Pfannerer-Mittas\n\nAFFILIATION:\n University of À¶Ý®ÊÓÆµ\n\nLOCATION:\n MC 5501\n\nABSTRACT: In 2010\, B. Rhoades proved that promotion on rectangular\nstandard Young tableaux together with the a ssociated fake-degree\npolynomial shifted by an appropriate power\, provid es an instance of\nthe cyclic sieving phenomenon. \n\nMotivated in part b y this result\, we show that we can expect a cyclic\nsieving phenomenon fo r _m_-tuples of standard Young tableaux of the\nsame shape and the _m_-t h power of the associated fake-degree\npolynomial\, for fixed _m_\, unde r mild and easily checked conditions.\nHowever\, we are unable to exhibit an appropriate group action\nexplicitly.\nPut differently\, we determine i n which cases the _m_th tensor power\nof a character of the symmetric gro up carries a permutation\nrepresentation of the cyclic group. \nTo do so\ , we use a method proposed by N. Amini and P. Alexandersson\,\nwhich amoun ts to establishing a bound on the number of border-strip\ntableaux. \n\nF inally\, we apply our results to the invariant theory of tensor powers\nof the adjoint representation of the general linear group. In\nparticular\, we prove the existence of a statistic on permutations\,\nwhich is equidist ributed with the RSK-shape and invariant under\nrotation.\n\nThis is based on joint work with Per Alexandersson\, Martin Rubey and\nJoakim Uhlin.\n\ n \n\n \n DTSTAMP:20250706T090600Z END:VEVENT END:VCALENDAR