BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20240310T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20241103T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:68276ea466444 DTSTART;TZID=America/Toronto:20241206T153000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20241206T163000 URL:/combinatorics-and-optimization/events/tutte-colloq uium-robert-andrews SUMMARY:Tutte colloquium-Robert Andrews CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Constant-Depth Arithmetic Circuits for Linea r Algebra Problems\n\nSPEAKER:\n Robert Andrews\n\nAFFILIATION:\n Universi ty of À¶Ý®ÊÓÆµ\n\nLOCATION:\n MC 5501\n\nABSTRACT: What is the computation al complexity of the greatest common\ndivisor (GCD) of two univariate poly nomials? The Euclidean algorithm\nprovides a polynomial-time solution\, an d fast variants of the\nEuclidean algorithm can compute the GCD in nearly- linear time. The GCD\ncan also be expressed in a linear-algebraic form. Ba sic tasks in\nlinear algebra\, such as computing determinants and solving linear\nsystems\, can be performed in O(log^2 n) parallel time\, and this can be\nused to compute the GCD in O(log^2 n) parallel time. This algorith m\ndoes not take advantage of any structure present in the resulting\nline ar systems\, so in principle one could compute the GCD in parallel\neven f aster.\n\nIn this talk\, I will describe a new algorithm that computes the GCD in\nO(log n) parallel time by using a combination of polynomial\ninte rpolation and Newton's identities for symmetric polynomials. In\nfact\, th is algorithm can be implemented as an arithmetic circuit of\nconstant dept h. Similar ideas yield constant-depth circuits to compute\nthe resultant\, Bézout coefficients\, and squarefree decomposition.\n\n \n\n \n DTSTAMP:20250516T165812Z END:VEVENT END:VCALENDAR