BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20240310T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20241103T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:68276b399fe64 DTSTART;TZID=America/Toronto:20241104T113000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20241104T123000 URL:/combinatorics-and-optimization/events/algebraic-gr aph-theory-he-guo SUMMARY:Algebraic Graph Theory-He Guo CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Intersection of Matroids\n\nSPEAKER:\n He Gu o\n\nAFFILIATION:\n Umeå University\n\nLOCATION:\n Please contact Sabrin a Lato for Zoom link.\n\nABSTRACT: We study simplicial complexes (hypergr aphs closed under\ntaking subsets) that are the intersection of a given nu mber k of\nmatroids. We prove bounds on their chromatic numbers (the minim um\nnumber of edges required to cover the ground set) and their list\nchro matic numbers. Settling a conjecture of Kiraly and\nBerczi--Schwarcz--Yama guchi\, we prove that the list chromatic number\nis at most k times the ch romatic number. The tools used are in part\ntopological. If time permits\, I will also discuss a result proving\nthat the list chromatic number of t he intersection of two matroids is\nat most the sum of the chromatic numb ers of each matroid\, improving a\nresult by Aharoni and Berger from 2006. The talk is based on works\njoint with Ron Aharoni\, Eli Berger\, and Dan iel Kotlar. In this talk\,\nthere is no assumption about background knowle dge of matroid theory or\nalgebraic topology.\n DTSTAMP:20250516T164337Z END:VEVENT END:VCALENDAR