BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20240310T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20231105T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:68276ee9ded72 DTSTART;TZID=America/Toronto:20240913T153000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240913T163000 URL:/combinatorics-and-optimization/events/tutte-colloq uium-thomas-jung-spier SUMMARY:Tutte colloquium-Thomás Jung Spier CLASS:PUBLIC DESCRIPTION:Summary \n\nSum of squares of positive eigenvalues\n\nSpeaker\n Thomás Jung Spier\n\nAffiliation\n University of À¶Ý®ÊÓÆµ\n\nLocation\n MC 5501\n\nThe spectral Turán theorem says that if a graph has largest\ne igenvalue $\\lambda_1$\, $m$ edges and clique number $\\omega$\, then\n$\\ lambda_1^2 \\leq 2m (1-\\frac{1}{\\omega})$. This result implies the\nclas sical Turán bound $m \\leq (1-\\frac{1}{\\omega})\\frac{n^2}{2}$.\nIn thi s talk\, we present the proof of the Wocjan\, Elphick and\nAnekstein conje cture in which\, in the spectral Turán bound\, the\nsquare of the first e igenvalue is replaced by the sum of the squares\nof the positive eigenvalu es and the clique number is replaced by the\nvector chromatic number. \nW e will also present recent progress towards a conjecture by Bollobás\nand Nikiforov in which\, in the spectral Turán bound\, the square of\nthe fi rst eigenvalue is replaced by the sum of the squares of the two\nlargest e igenvalues. This is joint work with Gabriel Coutinho and\nShengtong Zhang. \n DTSTAMP:20250516T165921Z END:VEVENT END:VCALENDAR