BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20240310T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20231105T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:6870d03cc4eae DTSTART;TZID=America/Toronto:20240816T153000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240816T163000 URL:/combinatorics-and-optimization/events/tutte-colloq uium-vera-roshchina SUMMARY:Tutte Colloquium - Vera Roshchina CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Everything is possible: constructing convex sets with\nprescribed facial dimensions\, efficiently\n\nSPEAKER:\n Vera Roshchina\n\nAFFILIATION:\n UNSW\n\nLOCATION:\n MC 5501\n\nABSTRACT: Give n any finite set of nonnegative integers\, there exists\na closed convex s et whose facial dimension signature coincides with\nthis set of integers\, that is\, the dimensions of its nonempty faces\ncomprise exactly this set of integers. In this work\, we show that such\nsets can be realised as so lution sets of systems of finitely many\nconvex quadratic inequalities\, a nd hence are representable via\nsecond-order cone programming problems\, a nd are\, in particular\,\nspectrahedral. \n DTSTAMP:20250711T085004Z END:VEVENT END:VCALENDAR