BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20230312T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20231105T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:68be997062bd4 DTSTART;TZID=America/Toronto:20240227T150000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240227T160000 URL:/combinatorics-and-optimization/events/graphs-and-m atroids-aristotelis-chaniotis SUMMARY:Graphs and Matroids - Aristotelis Chaniotis CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Intersections of graphs and χ-boundedness: Interval graphs\,\nchordal graphs\, and χ-guarding graph classes \n\nSPEA KER:\n Aristotelis Chaniotis\n\nAFFILIATION:\n University of À¶Ý®ÊÓÆµ\n\nL OCATION:\n MC 5417\n\nABSTRACT: Following A. Gyárfás (1987)\, we say tha t a hereditary\nclass of graphs is χ-bounded if there exists a function w hich\nprovides an upper bound for the chromatic number of each graph of th e\nclass in terms of the graph's clique number. In this terminology\, E.\n Asplund and B.Grünbaum (1960)\,  motivated by a question of A.\nBielecsk i (1948)\, proved that the class of intersection graphs of axis\nparallel rectangles is χ-bounded\, and J. P. Burling\, in his Ph.D.\nthesis (1965) \, proved that the class of intersection graphs of axis\nparallel boxes in R^3 is not χ-bounded.\n DTSTAMP:20250908T085304Z END:VEVENT END:VCALENDAR