BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20230312T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20231105T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:686a3d0b04088 DTSTART;TZID=America/Toronto:20240301T153000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20240301T163000 URL:/combinatorics-and-optimization/events/tutte-colloq uium-sanjeev-khanna SUMMARY:Tutte Colloquium - Sanjeev Khanna CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: A Faster Combinatorial Algorithm for Maximum Bipartite\nMatching           \n\nSPEAKER:\n Sanjeev Khanna\n\n AFFILIATION:\n University of Pennsylvania\n\nLOCATION:\n MC 5501\n\nABSTRA CT: The maximum bipartite matching problem is among the most\nfundamental and well-studied problems in combinatorial optimization. A\nbeautiful and celebrated combinatorial algorithm of Hopcroft and Karp\n(1973) shows that maximum bipartite matching can be solved in $O(m\n\\sqrt{n})$ time on a g raph with $n$ vertices and $m$ edges. For the\ncase of very dense graphs\, a fast matrix multiplication based approach\ngives a running time of $O(n ^{2.371})$. These results represented the\nfastest known algorithms for th e problem until 2013\, when Madry\nintroduced a new approach based on cont inuous techniques achieving\nmuch faster runtime in sparse graphs. \n DTSTAMP:20250706T090827Z END:VEVENT END:VCALENDAR