BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20230312T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20231105T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:682e3de2c7299 DTSTART;TZID=America/Toronto:20231124T130000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20231124T130000 URL:/combinatorics-and-optimization/events/co-reading-g roup-victor-sanches-portella SUMMARY:C&O Reading Group - Victor Sanches Portella CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Online Convex Optimization\n\nSPEAKER:\n Vic tor Sanches Portella\n\nAFFILIATION:\n University of British Columbia\n\nL OCATION:\n MC 6029\n\nABSTRACT: Online learning (OL) is a theoretical fram ework for learning\nwith data online. Moreover\, we usually make no assump tions on the\ndistribution of the data\, allowing it even to be adversaria l to the\nlearner. Maybe surprisingly\, we can still design algorithms tha t\, in\nsome sense\, “successfully learn” in this setting. This level of\ngenerality makes many of the ideas\, algorithms\, and techniques from OL\nuseful in applications in theoretical computer science\, optimization\ nin machine learning\, and control. In this talk I will give a brief\nintr oduction to the key concepts in online learning and  mention a\nfew topic s within or adjacent to online learning that I believe cover\nfundamental ideas in OL and/or with interesting open research\nquestions.\n DTSTAMP:20250521T205602Z END:VEVENT END:VCALENDAR