BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20230312T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20231105T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:682e0b445cbfd DTSTART;TZID=America/Toronto:20231113T113000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20231113T113000 URL:/combinatorics-and-optimization/events/algebraic-gr aph-theory-roghayeh-maleki SUMMARY:Algebraic Graph Theory - Roghayeh Maleki CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Distance-regular graphs that support a unifo rm structure\n\nSPEAKER:\n Roghayeh Maleki\n\nAFFILIATION:\n University of Primorska\n\nLOCATION:\n Please contact Sabrina Lato for Zoom link.\n\n ABSTRACT: Given a connected bipartite graph $G$\, the adjacency matrix\n$A $ of $G$ can be decomposed as  $A=L+R$\, where $L=L(x)$ and $R=R(x)$\nare respectively the  lowering and the raising matrices with respect\nto a c ertain vertex $x$. The graph $G$ has a \\textit{uniform\nstructure} with r espect to $x$ if the matrices $RL^2$\, $LRL$\, $L^2R$\,\nand $L$ satisfy a certain linear dependency.\n DTSTAMP:20250521T172004Z END:VEVENT END:VCALENDAR