BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20230312T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20221106T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:682d6b5bdfb0d DTSTART;TZID=America/Toronto:20231030T113000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20231030T113000 URL:/combinatorics-and-optimization/events/algebraic-gr aph-theory-shaun-fallat SUMMARY:Algebraic Graph Theory - Shaun Fallat CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Graphs that Admit Orthogonal Matrices\n\nSPE AKER:\n Shaun Fallat\n\nAFFILIATION:\n University of Regina\n\nLOCATION:\n Please contact Sabrina Lato for Zoom link.\n\nABSTRACT: Given a simple graph $G=(\\{1\,\\ldots\, n}\,E)\, we consider the\nclass $S(G)$ of real s ymmetric $n \\times n$ matrices $A=[a_{ij}]$ such\nthat for $i\\neq j$\, $ a_{ij}\\neq 0$ iff $ij \\in E$. Under the umbrella\nof the inverse eigenva lue problem for graphs (IEPG)\, $q(G)$ - known as\nthe minimum number of d istinct eigenvalues of $G$ - has emerged as one\nof the most well-studied parameters of the IEPG. Naturally\,\ncharacterizing graphs $G$ for which $ q(G) \\leq\, =\, \\geq k$ is an\nimportant step for studying the IEPG. \n DTSTAMP:20250521T055747Z END:VEVENT END:VCALENDAR