BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20230312T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20221106T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:682cfb7fc38b4 DTSTART;TZID=America/Toronto:20231026T150000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20231026T150000 URL:/combinatorics-and-optimization/events/graphs-and-m atroids-seminar-dao-chen-yuan SUMMARY:Graphs and Matroids Seminar - Dao Chen Yuan CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Chromatic Number of Random Signed Graphs\n\n SPEAKER:\n Dao Chen Yuan\n\nAFFILIATION:\n University of À¶Ý®ÊÓÆµ\n\nLOCAT ION:\n MC 5417\n\nABSTRACT: A signed graph is a graph where edges are labe lled {+1\,-1}.\nA signed colouring in 2k colours maps the vertices of a si gned graph\nto {-k\,...\,-1\,1\,...\,k}\, such that neighbours joined by a positive edge\ndo not share the same colour\, and those joined by a negat ive edge do\nnot share opposite colours. It is a classical result that the \nchromatic number of a G(n\,p) Erdos-Renyi random graph is\nasymptoticall y almost surely n/(2log_b(n))\, where p is constant and\nb=1/(1-p). We ext end the method used there to prove that the chromatic\nnumber of a G(n\,p\ ,q) random signed graph\, where q is the probability\nthat an edge is labe lled -1\, is also a.a.s. n/(2log_b(n))\, if p is\nconstant and q=o(1).\n DTSTAMP:20250520T220031Z END:VEVENT END:VCALENDAR