BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20230312T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20221106T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:682cec71d4acd DTSTART;TZID=America/Toronto:20230731T113000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20230731T113000 URL:/combinatorics-and-optimization/events/algebraic-gr aph-theory-safet-penjic SUMMARY:Algebraic Graph Theory - Safet Penjić CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Short note about commutative association sch emes and specific\n(directed) family of graphs\n\nSPEAKER:\n Safet Penjić \n\nAFFILIATION:\n University of Primorska\n\nLOCATION:\n Please contact  Sabrina Lato for Zoom link\n\nABSTRACT: In this talk\, we consider the fo llowing problem:\n\n{\\bf Problem.} When the Bose--Mesner algebra ${\\cal M}$ of\ncommutative $d$-class association scheme ${\\mathfrak X}$ (which is not\nnecessarily symmetric) can be generated by a $01$-matrix $A$? With \nother words\, for a given ${\\mathfrak X}$ can we find $01$-matrix $A$\n such that ${\\cal M}=(\\langle A\\rangle\, +\, \\cdot)$? \n DTSTAMP:20250520T205617Z END:VEVENT END:VCALENDAR