BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20230312T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20221106T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:68d23f31d4b6c DTSTART;TZID=America/Toronto:20230724T113000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20230724T113000 URL:/combinatorics-and-optimization/events/algebraic-gr aph-theory-hendrik-van-maldeghem SUMMARY:Algebraic Graph Theory - Hendrik Van Maldeghem CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Geometric approach to some rank 3 graphs\n\n SPEAKER:\n Hendrik Van Maldeghem\n\nAFFILIATION:\n Ghent University\n\nLOC ATION:\n Please contact Sabrina Lato for Zoom link\n\nABSTRACT: Rank 3 g raphs are graphs whose full automorphism group acts\nas a rank 3 group on the vertices. Finite rank 3 groups are classified\nand hence finite rank 3 graphs are classified. The main examples arise\nfrom geometric structures such as projective and polar spaces\, and\nthere is one class of examples related to the exceptional groups of\ntype E6. We present a combinatorial /geometric/projective construction\nof these graphs.  We then consider a class of regular sets\, that is\,\nsubsets S of the vertices such that the number of vertices of S\nadjacent to some vertex v only depends on whethe r v belongs to S or\nnot. We will explain how this leads to characterizati ons of certain\nautomorphisms of the E6 graphs and other graphs.\n DTSTAMP:20250923T063321Z END:VEVENT END:VCALENDAR