BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20230312T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20221106T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:682e479b6e1f0 DTSTART;TZID=America/Toronto:20230626T130000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20230626T130000 URL:/combinatorics-and-optimization/events/co-reading-g roup-nathan-benedetto-proenca-0 SUMMARY:C&O Reading Group - Nathan Benedetto Proenca CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: A Primal-Dual Extension of the Goemans--Will iamson Algorithm\nfor the Weighted Fractional Cut Covering Problem\, Part II\n\nSPEAKER:\n Nathan Benedetto Proenca\n\nAFFILIATION:\n University of À¶Ý®ÊÓÆµ\n\nLOCATION:\n MC 6029\n\nABSTRACT: A cut in a graph \\(G = (V\, E)\\) is a set of edges which has\nprecisely one endpoint in \\(S\\)\, for a given subset \\(S\\) of \\(V\\).\nThe fractional cut-covering number is the optimal value of a linear\nprogramming relaxation for the problem of covering each edge by a set\nof cuts. We define a semidefinite programming relaxation of fractional\ncut covering whose approximate optimal solution s may be rounded into a\nfractional cut cover via a randomized algorithm. \n DTSTAMP:20250521T213731Z END:VEVENT END:VCALENDAR