BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20230312T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20221106T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:682e44ade69d2 DTSTART;TZID=America/Toronto:20230629T150000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20230629T150000 URL:/combinatorics-and-optimization/events/graphs-and-m atroids-seminar-jane-gao-0 SUMMARY:Graphs and Matroids Seminar - Jane Gao CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Minors of random representable matroid over finite fields\n\nSPEAKER:\n Jane Gao\n\nAFFILIATION:\n University of Water loo\n\nLOCATION:\n MC 5479\n\nABSTRACT: Consider a random n by m matrix A over GF(q) where every\ncolumn has k nonzero elements\, and let M[A] be th e matroid represented\nby A. In the case that q=2\, Cooper\, Frieze and Pe gden (RSA 2019)\nproved that given a fixed binary matroid N\, if k is suff iciently\nlarge\, and m/n is sufficiently large (both depending on N)\, th en whp.\nM[A] contains N as a minor. We improve their result by determinin g the\nsharp threshold (of m/n) for the appearance of a fixed q-nary matro id\nN as a minor of M[A]\, for every k\\ge 3\, and every prime q. This is\ njoint work with Peter Nelson.\n DTSTAMP:20250521T212501Z END:VEVENT END:VCALENDAR