BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20220313T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20221106T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:682e3566481d8 DTSTART;TZID=America/Toronto:20221212T113000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20221212T113000 URL:/combinatorics-and-optimization/events/algebraic-gr aph-theory-seminar-venkata-raghu-tej-pantangi SUMMARY:Algebraic Graph Theory Seminar - Venkata Raghu Tej Pantangi CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Cameron-Liebler Sets in Permutation Groups\ n\nSpeaker:\n Venkata Raghu Tej Pantangi\n\nAffiliation:\n University of R egina\n\nLocation:\n Contact Sabrina Lato for Zoom link\n\nABSTRACT: Le t $G \\leq S_{n}$ be a transitive permutation group. Given\n$i\,j \\in [n] $\, by $x_{i\\to j}$\, denote the characteristic function of\nthe set $\\{ g \\in G\\ :\\ g(i)=j\\}$. A Cameron-Liebler set (CL set) in\n$G$ is a set which is represented by a Boolean function in the linear\nspan of $\\{x_{ i\\to j} \\ :\\ (i\,j)\\in [n]^2\\}$. These are analogous to\nBoolean degr ee 1 functions on the hypercube and to Cameron-Liebler\nline classes in $P G(3\,q)$. Sets of the form $\\{g\\ : g(i)\\in X\\}$ and\n$\\{g\\ : \\ i \\ in g(X)\\}$ (for $i \\in [n]$ and $X \\subset [n]$) are\ncanonically occur ring examples of CL sets. A result of Ellis et.al\,\nshows that all CL set s in the $S_{n}$ are canonnical. In this talk\, we\nwill demonstrate many examples with ``exotic'' CL sets. Of special\ninterest is an exotic CL set in $PSL(2\,q)$ (with $q \\equiv 3\n\\pmod{4}$)\, a 2-transitive group\, j ust like $S_{n}$. The talk is based\non ongoing joint work with Jozefien D 'haeseleer and Karen Meagher.\n DTSTAMP:20250521T201950Z END:VEVENT END:VCALENDAR